ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infclti Unicode version

Theorem infclti 7082
Description: An infimum belongs to its base class (closure law). See also inflbti 7083 and infglbti 7084. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypotheses
Ref Expression
infclti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
infclti.ex  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Assertion
Ref Expression
infclti  |-  ( ph  -> inf ( B ,  A ,  R )  e.  A
)
Distinct variable groups:    u, A, v, x, y, z    u, B, v, x, y, z   
u, R, v, x, y, z    ph, u, v, x, y, z

Proof of Theorem infclti
StepHypRef Expression
1 df-inf 7044 . 2  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
2 infclti.ti . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
32cnvti 7078 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
4 infclti.ex . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
54cnvinfex 7077 . . 3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
63, 5supclti 7057 . 2  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  e.  A )
71, 6eqeltrid 2280 1  |-  ( ph  -> inf ( B ,  A ,  R )  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4029   `'ccnv 4658   supcsup 7041  infcinf 7042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-cnv 4667  df-iota 5215  df-riota 5873  df-sup 7043  df-inf 7044
This theorem is referenced by:  infrenegsupex  9659  supminfex  9662  infregelbex  9663  infxrnegsupex  11406  infssuzledc  12087
  Copyright terms: Public domain W3C validator