ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsng Unicode version

Theorem cnvsng 5151
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.)
Assertion
Ref Expression
cnvsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )

Proof of Theorem cnvsng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3804 . . . . 5  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21sneqd 3631 . . . 4  |-  ( x  =  A  ->  { <. x ,  y >. }  =  { <. A ,  y
>. } )
32cnveqd 4838 . . 3  |-  ( x  =  A  ->  `' { <. x ,  y
>. }  =  `' { <. A ,  y >. } )
4 opeq2 3805 . . . 4  |-  ( x  =  A  ->  <. y ,  x >.  =  <. y ,  A >. )
54sneqd 3631 . . 3  |-  ( x  =  A  ->  { <. y ,  x >. }  =  { <. y ,  A >. } )
63, 5eqeq12d 2208 . 2  |-  ( x  =  A  ->  ( `' { <. x ,  y
>. }  =  { <. y ,  x >. }  <->  `' { <. A ,  y >. }  =  { <. y ,  A >. } ) )
7 opeq2 3805 . . . . 5  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
87sneqd 3631 . . . 4  |-  ( y  =  B  ->  { <. A ,  y >. }  =  { <. A ,  B >. } )
98cnveqd 4838 . . 3  |-  ( y  =  B  ->  `' { <. A ,  y
>. }  =  `' { <. A ,  B >. } )
10 opeq1 3804 . . . 4  |-  ( y  =  B  ->  <. y ,  A >.  =  <. B ,  A >. )
1110sneqd 3631 . . 3  |-  ( y  =  B  ->  { <. y ,  A >. }  =  { <. B ,  A >. } )
129, 11eqeq12d 2208 . 2  |-  ( y  =  B  ->  ( `' { <. A ,  y
>. }  =  { <. y ,  A >. }  <->  `' { <. A ,  B >. }  =  { <. B ,  A >. } ) )
13 vex 2763 . . 3  |-  x  e. 
_V
14 vex 2763 . . 3  |-  y  e. 
_V
1513, 14cnvsn 5148 . 2  |-  `' { <. x ,  y >. }  =  { <. y ,  x >. }
166, 12, 15vtocl2g 2824 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {csn 3618   <.cop 3621   `'ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667
This theorem is referenced by:  opswapg  5152  funsng  5300
  Copyright terms: Public domain W3C validator