ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsng Unicode version

Theorem cnvsng 5187
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.)
Assertion
Ref Expression
cnvsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )

Proof of Theorem cnvsng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3833 . . . . 5  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21sneqd 3656 . . . 4  |-  ( x  =  A  ->  { <. x ,  y >. }  =  { <. A ,  y
>. } )
32cnveqd 4872 . . 3  |-  ( x  =  A  ->  `' { <. x ,  y
>. }  =  `' { <. A ,  y >. } )
4 opeq2 3834 . . . 4  |-  ( x  =  A  ->  <. y ,  x >.  =  <. y ,  A >. )
54sneqd 3656 . . 3  |-  ( x  =  A  ->  { <. y ,  x >. }  =  { <. y ,  A >. } )
63, 5eqeq12d 2222 . 2  |-  ( x  =  A  ->  ( `' { <. x ,  y
>. }  =  { <. y ,  x >. }  <->  `' { <. A ,  y >. }  =  { <. y ,  A >. } ) )
7 opeq2 3834 . . . . 5  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
87sneqd 3656 . . . 4  |-  ( y  =  B  ->  { <. A ,  y >. }  =  { <. A ,  B >. } )
98cnveqd 4872 . . 3  |-  ( y  =  B  ->  `' { <. A ,  y
>. }  =  `' { <. A ,  B >. } )
10 opeq1 3833 . . . 4  |-  ( y  =  B  ->  <. y ,  A >.  =  <. B ,  A >. )
1110sneqd 3656 . . 3  |-  ( y  =  B  ->  { <. y ,  A >. }  =  { <. B ,  A >. } )
129, 11eqeq12d 2222 . 2  |-  ( y  =  B  ->  ( `' { <. A ,  y
>. }  =  { <. y ,  A >. }  <->  `' { <. A ,  B >. }  =  { <. B ,  A >. } ) )
13 vex 2779 . . 3  |-  x  e. 
_V
14 vex 2779 . . 3  |-  y  e. 
_V
1513, 14cnvsn 5184 . 2  |-  `' { <. x ,  y >. }  =  { <. y ,  x >. }
166, 12, 15vtocl2g 2842 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {csn 3643   <.cop 3646   `'ccnv 4692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701
This theorem is referenced by:  opswapg  5188  funsng  5339
  Copyright terms: Public domain W3C validator