ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsng Unicode version

Theorem cnvsng 5096
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.)
Assertion
Ref Expression
cnvsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )

Proof of Theorem cnvsng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3765 . . . . 5  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21sneqd 3596 . . . 4  |-  ( x  =  A  ->  { <. x ,  y >. }  =  { <. A ,  y
>. } )
32cnveqd 4787 . . 3  |-  ( x  =  A  ->  `' { <. x ,  y
>. }  =  `' { <. A ,  y >. } )
4 opeq2 3766 . . . 4  |-  ( x  =  A  ->  <. y ,  x >.  =  <. y ,  A >. )
54sneqd 3596 . . 3  |-  ( x  =  A  ->  { <. y ,  x >. }  =  { <. y ,  A >. } )
63, 5eqeq12d 2185 . 2  |-  ( x  =  A  ->  ( `' { <. x ,  y
>. }  =  { <. y ,  x >. }  <->  `' { <. A ,  y >. }  =  { <. y ,  A >. } ) )
7 opeq2 3766 . . . . 5  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
87sneqd 3596 . . . 4  |-  ( y  =  B  ->  { <. A ,  y >. }  =  { <. A ,  B >. } )
98cnveqd 4787 . . 3  |-  ( y  =  B  ->  `' { <. A ,  y
>. }  =  `' { <. A ,  B >. } )
10 opeq1 3765 . . . 4  |-  ( y  =  B  ->  <. y ,  A >.  =  <. B ,  A >. )
1110sneqd 3596 . . 3  |-  ( y  =  B  ->  { <. y ,  A >. }  =  { <. B ,  A >. } )
129, 11eqeq12d 2185 . 2  |-  ( y  =  B  ->  ( `' { <. A ,  y
>. }  =  { <. y ,  A >. }  <->  `' { <. A ,  B >. }  =  { <. B ,  A >. } ) )
13 vex 2733 . . 3  |-  x  e. 
_V
14 vex 2733 . . 3  |-  y  e. 
_V
1513, 14cnvsn 5093 . 2  |-  `' { <. x ,  y >. }  =  { <. y ,  x >. }
166, 12, 15vtocl2g 2794 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {csn 3583   <.cop 3586   `'ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619
This theorem is referenced by:  opswapg  5097  funsng  5244
  Copyright terms: Public domain W3C validator