Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvsng | Unicode version |
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) |
Ref | Expression |
---|---|
cnvsng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3758 | . . . . 5 | |
2 | 1 | sneqd 3589 | . . . 4 |
3 | 2 | cnveqd 4780 | . . 3 |
4 | opeq2 3759 | . . . 4 | |
5 | 4 | sneqd 3589 | . . 3 |
6 | 3, 5 | eqeq12d 2180 | . 2 |
7 | opeq2 3759 | . . . . 5 | |
8 | 7 | sneqd 3589 | . . . 4 |
9 | 8 | cnveqd 4780 | . . 3 |
10 | opeq1 3758 | . . . 4 | |
11 | 10 | sneqd 3589 | . . 3 |
12 | 9, 11 | eqeq12d 2180 | . 2 |
13 | vex 2729 | . . 3 | |
14 | vex 2729 | . . 3 | |
15 | 13, 14 | cnvsn 5086 | . 2 |
16 | 6, 12, 15 | vtocl2g 2790 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 csn 3576 cop 3579 ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 |
This theorem is referenced by: opswapg 5090 funsng 5234 |
Copyright terms: Public domain | W3C validator |