![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvsng | GIF version |
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) |
Ref | Expression |
---|---|
cnvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3779 | . . . . 5 ⊢ (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩) | |
2 | 1 | sneqd 3606 | . . . 4 ⊢ (𝑥 = 𝐴 → {⟨𝑥, 𝑦⟩} = {⟨𝐴, 𝑦⟩}) |
3 | 2 | cnveqd 4804 | . . 3 ⊢ (𝑥 = 𝐴 → ◡{⟨𝑥, 𝑦⟩} = ◡{⟨𝐴, 𝑦⟩}) |
4 | opeq2 3780 | . . . 4 ⊢ (𝑥 = 𝐴 → ⟨𝑦, 𝑥⟩ = ⟨𝑦, 𝐴⟩) | |
5 | 4 | sneqd 3606 | . . 3 ⊢ (𝑥 = 𝐴 → {⟨𝑦, 𝑥⟩} = {⟨𝑦, 𝐴⟩}) |
6 | 3, 5 | eqeq12d 2192 | . 2 ⊢ (𝑥 = 𝐴 → (◡{⟨𝑥, 𝑦⟩} = {⟨𝑦, 𝑥⟩} ↔ ◡{⟨𝐴, 𝑦⟩} = {⟨𝑦, 𝐴⟩})) |
7 | opeq2 3780 | . . . . 5 ⊢ (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩) | |
8 | 7 | sneqd 3606 | . . . 4 ⊢ (𝑦 = 𝐵 → {⟨𝐴, 𝑦⟩} = {⟨𝐴, 𝐵⟩}) |
9 | 8 | cnveqd 4804 | . . 3 ⊢ (𝑦 = 𝐵 → ◡{⟨𝐴, 𝑦⟩} = ◡{⟨𝐴, 𝐵⟩}) |
10 | opeq1 3779 | . . . 4 ⊢ (𝑦 = 𝐵 → ⟨𝑦, 𝐴⟩ = ⟨𝐵, 𝐴⟩) | |
11 | 10 | sneqd 3606 | . . 3 ⊢ (𝑦 = 𝐵 → {⟨𝑦, 𝐴⟩} = {⟨𝐵, 𝐴⟩}) |
12 | 9, 11 | eqeq12d 2192 | . 2 ⊢ (𝑦 = 𝐵 → (◡{⟨𝐴, 𝑦⟩} = {⟨𝑦, 𝐴⟩} ↔ ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})) |
13 | vex 2741 | . . 3 ⊢ 𝑥 ∈ V | |
14 | vex 2741 | . . 3 ⊢ 𝑦 ∈ V | |
15 | 13, 14 | cnvsn 5112 | . 2 ⊢ ◡{⟨𝑥, 𝑦⟩} = {⟨𝑦, 𝑥⟩} |
16 | 6, 12, 15 | vtocl2g 2802 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {csn 3593 ⟨cop 3596 ◡ccnv 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 df-xp 4633 df-rel 4634 df-cnv 4635 |
This theorem is referenced by: opswapg 5116 funsng 5263 |
Copyright terms: Public domain | W3C validator |