Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvsng | GIF version |
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) |
Ref | Expression |
---|---|
cnvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3765 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | sneqd 3596 | . . . 4 ⊢ (𝑥 = 𝐴 → {〈𝑥, 𝑦〉} = {〈𝐴, 𝑦〉}) |
3 | 2 | cnveqd 4787 | . . 3 ⊢ (𝑥 = 𝐴 → ◡{〈𝑥, 𝑦〉} = ◡{〈𝐴, 𝑦〉}) |
4 | opeq2 3766 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑦, 𝑥〉 = 〈𝑦, 𝐴〉) | |
5 | 4 | sneqd 3596 | . . 3 ⊢ (𝑥 = 𝐴 → {〈𝑦, 𝑥〉} = {〈𝑦, 𝐴〉}) |
6 | 3, 5 | eqeq12d 2185 | . 2 ⊢ (𝑥 = 𝐴 → (◡{〈𝑥, 𝑦〉} = {〈𝑦, 𝑥〉} ↔ ◡{〈𝐴, 𝑦〉} = {〈𝑦, 𝐴〉})) |
7 | opeq2 3766 | . . . . 5 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
8 | 7 | sneqd 3596 | . . . 4 ⊢ (𝑦 = 𝐵 → {〈𝐴, 𝑦〉} = {〈𝐴, 𝐵〉}) |
9 | 8 | cnveqd 4787 | . . 3 ⊢ (𝑦 = 𝐵 → ◡{〈𝐴, 𝑦〉} = ◡{〈𝐴, 𝐵〉}) |
10 | opeq1 3765 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝑦, 𝐴〉 = 〈𝐵, 𝐴〉) | |
11 | 10 | sneqd 3596 | . . 3 ⊢ (𝑦 = 𝐵 → {〈𝑦, 𝐴〉} = {〈𝐵, 𝐴〉}) |
12 | 9, 11 | eqeq12d 2185 | . 2 ⊢ (𝑦 = 𝐵 → (◡{〈𝐴, 𝑦〉} = {〈𝑦, 𝐴〉} ↔ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉})) |
13 | vex 2733 | . . 3 ⊢ 𝑥 ∈ V | |
14 | vex 2733 | . . 3 ⊢ 𝑦 ∈ V | |
15 | 13, 14 | cnvsn 5093 | . 2 ⊢ ◡{〈𝑥, 𝑦〉} = {〈𝑦, 𝑥〉} |
16 | 6, 12, 15 | vtocl2g 2794 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {csn 3583 〈cop 3586 ◡ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 |
This theorem is referenced by: opswapg 5097 funsng 5244 |
Copyright terms: Public domain | W3C validator |