![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvsng | GIF version |
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) |
Ref | Expression |
---|---|
cnvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3652 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | sneqd 3487 | . . . 4 ⊢ (𝑥 = 𝐴 → {〈𝑥, 𝑦〉} = {〈𝐴, 𝑦〉}) |
3 | 2 | cnveqd 4653 | . . 3 ⊢ (𝑥 = 𝐴 → ◡{〈𝑥, 𝑦〉} = ◡{〈𝐴, 𝑦〉}) |
4 | opeq2 3653 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑦, 𝑥〉 = 〈𝑦, 𝐴〉) | |
5 | 4 | sneqd 3487 | . . 3 ⊢ (𝑥 = 𝐴 → {〈𝑦, 𝑥〉} = {〈𝑦, 𝐴〉}) |
6 | 3, 5 | eqeq12d 2114 | . 2 ⊢ (𝑥 = 𝐴 → (◡{〈𝑥, 𝑦〉} = {〈𝑦, 𝑥〉} ↔ ◡{〈𝐴, 𝑦〉} = {〈𝑦, 𝐴〉})) |
7 | opeq2 3653 | . . . . 5 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
8 | 7 | sneqd 3487 | . . . 4 ⊢ (𝑦 = 𝐵 → {〈𝐴, 𝑦〉} = {〈𝐴, 𝐵〉}) |
9 | 8 | cnveqd 4653 | . . 3 ⊢ (𝑦 = 𝐵 → ◡{〈𝐴, 𝑦〉} = ◡{〈𝐴, 𝐵〉}) |
10 | opeq1 3652 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝑦, 𝐴〉 = 〈𝐵, 𝐴〉) | |
11 | 10 | sneqd 3487 | . . 3 ⊢ (𝑦 = 𝐵 → {〈𝑦, 𝐴〉} = {〈𝐵, 𝐴〉}) |
12 | 9, 11 | eqeq12d 2114 | . 2 ⊢ (𝑦 = 𝐵 → (◡{〈𝐴, 𝑦〉} = {〈𝑦, 𝐴〉} ↔ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉})) |
13 | vex 2644 | . . 3 ⊢ 𝑥 ∈ V | |
14 | vex 2644 | . . 3 ⊢ 𝑦 ∈ V | |
15 | 13, 14 | cnvsn 4957 | . 2 ⊢ ◡{〈𝑥, 𝑦〉} = {〈𝑦, 𝑥〉} |
16 | 6, 12, 15 | vtocl2g 2705 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1299 ∈ wcel 1448 {csn 3474 〈cop 3477 ◡ccnv 4476 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-opab 3930 df-xp 4483 df-rel 4484 df-cnv 4485 |
This theorem is referenced by: opswapg 4961 funsng 5105 |
Copyright terms: Public domain | W3C validator |