| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvsng | GIF version | ||
| Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) |
| Ref | Expression |
|---|---|
| cnvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3809 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | sneqd 3636 | . . . 4 ⊢ (𝑥 = 𝐴 → {〈𝑥, 𝑦〉} = {〈𝐴, 𝑦〉}) |
| 3 | 2 | cnveqd 4843 | . . 3 ⊢ (𝑥 = 𝐴 → ◡{〈𝑥, 𝑦〉} = ◡{〈𝐴, 𝑦〉}) |
| 4 | opeq2 3810 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑦, 𝑥〉 = 〈𝑦, 𝐴〉) | |
| 5 | 4 | sneqd 3636 | . . 3 ⊢ (𝑥 = 𝐴 → {〈𝑦, 𝑥〉} = {〈𝑦, 𝐴〉}) |
| 6 | 3, 5 | eqeq12d 2211 | . 2 ⊢ (𝑥 = 𝐴 → (◡{〈𝑥, 𝑦〉} = {〈𝑦, 𝑥〉} ↔ ◡{〈𝐴, 𝑦〉} = {〈𝑦, 𝐴〉})) |
| 7 | opeq2 3810 | . . . . 5 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 8 | 7 | sneqd 3636 | . . . 4 ⊢ (𝑦 = 𝐵 → {〈𝐴, 𝑦〉} = {〈𝐴, 𝐵〉}) |
| 9 | 8 | cnveqd 4843 | . . 3 ⊢ (𝑦 = 𝐵 → ◡{〈𝐴, 𝑦〉} = ◡{〈𝐴, 𝐵〉}) |
| 10 | opeq1 3809 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝑦, 𝐴〉 = 〈𝐵, 𝐴〉) | |
| 11 | 10 | sneqd 3636 | . . 3 ⊢ (𝑦 = 𝐵 → {〈𝑦, 𝐴〉} = {〈𝐵, 𝐴〉}) |
| 12 | 9, 11 | eqeq12d 2211 | . 2 ⊢ (𝑦 = 𝐵 → (◡{〈𝐴, 𝑦〉} = {〈𝑦, 𝐴〉} ↔ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉})) |
| 13 | vex 2766 | . . 3 ⊢ 𝑥 ∈ V | |
| 14 | vex 2766 | . . 3 ⊢ 𝑦 ∈ V | |
| 15 | 13, 14 | cnvsn 5153 | . 2 ⊢ ◡{〈𝑥, 𝑦〉} = {〈𝑦, 𝑥〉} |
| 16 | 6, 12, 15 | vtocl2g 2828 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {csn 3623 〈cop 3626 ◡ccnv 4663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 |
| This theorem is referenced by: opswapg 5157 funsng 5305 |
| Copyright terms: Public domain | W3C validator |