ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coex Unicode version

Theorem coex 5195
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
Hypotheses
Ref Expression
coex.1  |-  A  e. 
_V
coex.2  |-  B  e. 
_V
Assertion
Ref Expression
coex  |-  ( A  o.  B )  e. 
_V

Proof of Theorem coex
StepHypRef Expression
1 coex.1 . 2  |-  A  e. 
_V
2 coex.2 . 2  |-  B  e. 
_V
3 coexg 5194 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  o.  B
)  e.  _V )
41, 2, 3mp2an 426 1  |-  ( A  o.  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   _Vcvv 2752    o. ccom 4651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658
This theorem is referenced by:  domtr  6815  cc3  7302  hashfacen  10857  nninfct  12083  ctinfom  12490  qnnen  12493  enctlem  12494
  Copyright terms: Public domain W3C validator