| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enctlem | Unicode version | ||
| Description: Lemma for enct 12919. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| enctlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6533 |
. . . . 5
| |
| 2 | 1 | enref 6879 |
. . . 4
|
| 3 | djuen 7354 |
. . . 4
| |
| 4 | 2, 3 | mpan2 425 |
. . 3
|
| 5 | bren 6858 |
. . 3
| |
| 6 | 4, 5 | sylib 122 |
. 2
|
| 7 | f1ofo 5551 |
. . . . . 6
| |
| 8 | 7 | ad2antlr 489 |
. . . . 5
|
| 9 | foco 5531 |
. . . . . 6
| |
| 10 | vex 2779 |
. . . . . . . 8
| |
| 11 | vex 2779 |
. . . . . . . 8
| |
| 12 | 10, 11 | coex 5247 |
. . . . . . 7
|
| 13 | foeq1 5516 |
. . . . . . 7
| |
| 14 | 12, 13 | spcev 2875 |
. . . . . 6
|
| 15 | 9, 14 | syl 14 |
. . . . 5
|
| 16 | 8, 15 | sylancom 420 |
. . . 4
|
| 17 | 16 | ex 115 |
. . 3
|
| 18 | 17 | exlimdv 1843 |
. 2
|
| 19 | 6, 18 | exlimddv 1923 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-er 6643 df-en 6851 df-dju 7166 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: enct 12919 |
| Copyright terms: Public domain | W3C validator |