ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enctlem Unicode version

Theorem enctlem 12998
Description: Lemma for enct 12999. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
enctlem  |-  ( A 
~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
Distinct variable groups:    A, f    B, f, g
Allowed substitution hint:    A( g)

Proof of Theorem enctlem
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 1oex 6568 . . . . 5  |-  1o  e.  _V
21enref 6914 . . . 4  |-  1o  ~~  1o
3 djuen 7389 . . . 4  |-  ( ( A  ~~  B  /\  1o  ~~  1o )  -> 
( A 1o )  ~~  ( B 1o )
)
42, 3mpan2 425 . . 3  |-  ( A 
~~  B  ->  ( A 1o )  ~~  ( B 1o ) )
5 bren 6893 . . 3  |-  ( ( A 1o )  ~~  ( B 1o )  <->  E. h  h : ( A 1o ) -1-1-onto-> ( B 1o ) )
64, 5sylib 122 . 2  |-  ( A 
~~  B  ->  E. h  h : ( A 1o ) -1-1-onto-> ( B 1o ) )
7 f1ofo 5578 . . . . . 6  |-  ( h : ( A 1o ) -1-1-onto-> ( B 1o )  ->  h : ( A 1o )
-onto-> ( B 1o )
)
87ad2antlr 489 . . . . 5  |-  ( ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o )
)  /\  f : om -onto-> ( A 1o ) )  ->  h :
( A 1o ) -onto->
( B 1o )
)
9 foco 5558 . . . . . 6  |-  ( ( h : ( A 1o ) -onto-> ( B 1o )  /\  f : om -onto->
( A 1o )
)  ->  ( h  o.  f ) : om -onto->
( B 1o )
)
10 vex 2802 . . . . . . . 8  |-  h  e. 
_V
11 vex 2802 . . . . . . . 8  |-  f  e. 
_V
1210, 11coex 5273 . . . . . . 7  |-  ( h  o.  f )  e. 
_V
13 foeq1 5543 . . . . . . 7  |-  ( g  =  ( h  o.  f )  ->  (
g : om -onto-> ( B 1o )  <->  ( h  o.  f ) : om -onto->
( B 1o )
) )
1412, 13spcev 2898 . . . . . 6  |-  ( ( h  o.  f ) : om -onto-> ( B 1o )  ->  E. g 
g : om -onto-> ( B 1o ) )
159, 14syl 14 . . . . 5  |-  ( ( h : ( A 1o ) -onto-> ( B 1o )  /\  f : om -onto->
( A 1o )
)  ->  E. g 
g : om -onto-> ( B 1o ) )
168, 15sylancom 420 . . . 4  |-  ( ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o )
)  /\  f : om -onto-> ( A 1o ) )  ->  E. g 
g : om -onto-> ( B 1o ) )
1716ex 115 . . 3  |-  ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o ) )  -> 
( f : om -onto->
( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
1817exlimdv 1865 . 2  |-  ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o ) )  -> 
( E. f  f : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> ( B 1o ) ) )
196, 18exlimddv 1945 1  |-  ( A 
~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1538   class class class wbr 4082   omcom 4681    o. ccom 4722   -onto->wfo 5315   -1-1-onto->wf1o 5316   1oc1o 6553    ~~ cen 6883   ⊔ cdju 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-er 6678  df-en 6886  df-dju 7201  df-inl 7210  df-inr 7211
This theorem is referenced by:  enct  12999
  Copyright terms: Public domain W3C validator