ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enctlem Unicode version

Theorem enctlem 12774
Description: Lemma for enct 12775. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
enctlem  |-  ( A 
~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
Distinct variable groups:    A, f    B, f, g
Allowed substitution hint:    A( g)

Proof of Theorem enctlem
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 1oex 6509 . . . . 5  |-  1o  e.  _V
21enref 6855 . . . 4  |-  1o  ~~  1o
3 djuen 7322 . . . 4  |-  ( ( A  ~~  B  /\  1o  ~~  1o )  -> 
( A 1o )  ~~  ( B 1o )
)
42, 3mpan2 425 . . 3  |-  ( A 
~~  B  ->  ( A 1o )  ~~  ( B 1o ) )
5 bren 6834 . . 3  |-  ( ( A 1o )  ~~  ( B 1o )  <->  E. h  h : ( A 1o ) -1-1-onto-> ( B 1o ) )
64, 5sylib 122 . 2  |-  ( A 
~~  B  ->  E. h  h : ( A 1o ) -1-1-onto-> ( B 1o ) )
7 f1ofo 5528 . . . . . 6  |-  ( h : ( A 1o ) -1-1-onto-> ( B 1o )  ->  h : ( A 1o )
-onto-> ( B 1o )
)
87ad2antlr 489 . . . . 5  |-  ( ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o )
)  /\  f : om -onto-> ( A 1o ) )  ->  h :
( A 1o ) -onto->
( B 1o )
)
9 foco 5508 . . . . . 6  |-  ( ( h : ( A 1o ) -onto-> ( B 1o )  /\  f : om -onto->
( A 1o )
)  ->  ( h  o.  f ) : om -onto->
( B 1o )
)
10 vex 2774 . . . . . . . 8  |-  h  e. 
_V
11 vex 2774 . . . . . . . 8  |-  f  e. 
_V
1210, 11coex 5227 . . . . . . 7  |-  ( h  o.  f )  e. 
_V
13 foeq1 5493 . . . . . . 7  |-  ( g  =  ( h  o.  f )  ->  (
g : om -onto-> ( B 1o )  <->  ( h  o.  f ) : om -onto->
( B 1o )
) )
1412, 13spcev 2867 . . . . . 6  |-  ( ( h  o.  f ) : om -onto-> ( B 1o )  ->  E. g 
g : om -onto-> ( B 1o ) )
159, 14syl 14 . . . . 5  |-  ( ( h : ( A 1o ) -onto-> ( B 1o )  /\  f : om -onto->
( A 1o )
)  ->  E. g 
g : om -onto-> ( B 1o ) )
168, 15sylancom 420 . . . 4  |-  ( ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o )
)  /\  f : om -onto-> ( A 1o ) )  ->  E. g 
g : om -onto-> ( B 1o ) )
1716ex 115 . . 3  |-  ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o ) )  -> 
( f : om -onto->
( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
1817exlimdv 1841 . 2  |-  ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o ) )  -> 
( E. f  f : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> ( B 1o ) ) )
196, 18exlimddv 1921 1  |-  ( A 
~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1514   class class class wbr 4043   omcom 4637    o. ccom 4678   -onto->wfo 5268   -1-1-onto->wf1o 5269   1oc1o 6494    ~~ cen 6824   ⊔ cdju 7138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1st 6225  df-2nd 6226  df-1o 6501  df-er 6619  df-en 6827  df-dju 7139  df-inl 7148  df-inr 7149
This theorem is referenced by:  enct  12775
  Copyright terms: Public domain W3C validator