ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enctlem Unicode version

Theorem enctlem 12374
Description: Lemma for enct 12375. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
enctlem  |-  ( A 
~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
Distinct variable groups:    A, f    B, f, g
Allowed substitution hint:    A( g)

Proof of Theorem enctlem
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 1oex 6400 . . . . 5  |-  1o  e.  _V
21enref 6739 . . . 4  |-  1o  ~~  1o
3 djuen 7175 . . . 4  |-  ( ( A  ~~  B  /\  1o  ~~  1o )  -> 
( A 1o )  ~~  ( B 1o )
)
42, 3mpan2 423 . . 3  |-  ( A 
~~  B  ->  ( A 1o )  ~~  ( B 1o ) )
5 bren 6721 . . 3  |-  ( ( A 1o )  ~~  ( B 1o )  <->  E. h  h : ( A 1o ) -1-1-onto-> ( B 1o ) )
64, 5sylib 121 . 2  |-  ( A 
~~  B  ->  E. h  h : ( A 1o ) -1-1-onto-> ( B 1o ) )
7 f1ofo 5447 . . . . . 6  |-  ( h : ( A 1o ) -1-1-onto-> ( B 1o )  ->  h : ( A 1o )
-onto-> ( B 1o )
)
87ad2antlr 486 . . . . 5  |-  ( ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o )
)  /\  f : om -onto-> ( A 1o ) )  ->  h :
( A 1o ) -onto->
( B 1o )
)
9 foco 5428 . . . . . 6  |-  ( ( h : ( A 1o ) -onto-> ( B 1o )  /\  f : om -onto->
( A 1o )
)  ->  ( h  o.  f ) : om -onto->
( B 1o )
)
10 vex 2733 . . . . . . . 8  |-  h  e. 
_V
11 vex 2733 . . . . . . . 8  |-  f  e. 
_V
1210, 11coex 5154 . . . . . . 7  |-  ( h  o.  f )  e. 
_V
13 foeq1 5414 . . . . . . 7  |-  ( g  =  ( h  o.  f )  ->  (
g : om -onto-> ( B 1o )  <->  ( h  o.  f ) : om -onto->
( B 1o )
) )
1412, 13spcev 2825 . . . . . 6  |-  ( ( h  o.  f ) : om -onto-> ( B 1o )  ->  E. g 
g : om -onto-> ( B 1o ) )
159, 14syl 14 . . . . 5  |-  ( ( h : ( A 1o ) -onto-> ( B 1o )  /\  f : om -onto->
( A 1o )
)  ->  E. g 
g : om -onto-> ( B 1o ) )
168, 15sylancom 418 . . . 4  |-  ( ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o )
)  /\  f : om -onto-> ( A 1o ) )  ->  E. g 
g : om -onto-> ( B 1o ) )
1716ex 114 . . 3  |-  ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o ) )  -> 
( f : om -onto->
( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
1817exlimdv 1812 . 2  |-  ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o ) )  -> 
( E. f  f : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> ( B 1o ) ) )
196, 18exlimddv 1891 1  |-  ( A 
~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1485   class class class wbr 3987   omcom 4572    o. ccom 4613   -onto->wfo 5194   -1-1-onto->wf1o 5195   1oc1o 6385    ~~ cen 6712   ⊔ cdju 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-1st 6116  df-2nd 6117  df-1o 6392  df-er 6509  df-en 6715  df-dju 7011  df-inl 7020  df-inr 7021
This theorem is referenced by:  enct  12375
  Copyright terms: Public domain W3C validator