ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enctlem Unicode version

Theorem enctlem 12803
Description: Lemma for enct 12804. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
enctlem  |-  ( A 
~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
Distinct variable groups:    A, f    B, f, g
Allowed substitution hint:    A( g)

Proof of Theorem enctlem
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 1oex 6510 . . . . 5  |-  1o  e.  _V
21enref 6856 . . . 4  |-  1o  ~~  1o
3 djuen 7323 . . . 4  |-  ( ( A  ~~  B  /\  1o  ~~  1o )  -> 
( A 1o )  ~~  ( B 1o )
)
42, 3mpan2 425 . . 3  |-  ( A 
~~  B  ->  ( A 1o )  ~~  ( B 1o ) )
5 bren 6835 . . 3  |-  ( ( A 1o )  ~~  ( B 1o )  <->  E. h  h : ( A 1o ) -1-1-onto-> ( B 1o ) )
64, 5sylib 122 . 2  |-  ( A 
~~  B  ->  E. h  h : ( A 1o ) -1-1-onto-> ( B 1o ) )
7 f1ofo 5529 . . . . . 6  |-  ( h : ( A 1o ) -1-1-onto-> ( B 1o )  ->  h : ( A 1o )
-onto-> ( B 1o )
)
87ad2antlr 489 . . . . 5  |-  ( ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o )
)  /\  f : om -onto-> ( A 1o ) )  ->  h :
( A 1o ) -onto->
( B 1o )
)
9 foco 5509 . . . . . 6  |-  ( ( h : ( A 1o ) -onto-> ( B 1o )  /\  f : om -onto->
( A 1o )
)  ->  ( h  o.  f ) : om -onto->
( B 1o )
)
10 vex 2775 . . . . . . . 8  |-  h  e. 
_V
11 vex 2775 . . . . . . . 8  |-  f  e. 
_V
1210, 11coex 5228 . . . . . . 7  |-  ( h  o.  f )  e. 
_V
13 foeq1 5494 . . . . . . 7  |-  ( g  =  ( h  o.  f )  ->  (
g : om -onto-> ( B 1o )  <->  ( h  o.  f ) : om -onto->
( B 1o )
) )
1412, 13spcev 2868 . . . . . 6  |-  ( ( h  o.  f ) : om -onto-> ( B 1o )  ->  E. g 
g : om -onto-> ( B 1o ) )
159, 14syl 14 . . . . 5  |-  ( ( h : ( A 1o ) -onto-> ( B 1o )  /\  f : om -onto->
( A 1o )
)  ->  E. g 
g : om -onto-> ( B 1o ) )
168, 15sylancom 420 . . . 4  |-  ( ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o )
)  /\  f : om -onto-> ( A 1o ) )  ->  E. g 
g : om -onto-> ( B 1o ) )
1716ex 115 . . 3  |-  ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o ) )  -> 
( f : om -onto->
( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
1817exlimdv 1842 . 2  |-  ( ( A  ~~  B  /\  h : ( A 1o ) -1-1-onto-> ( B 1o ) )  -> 
( E. f  f : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> ( B 1o ) ) )
196, 18exlimddv 1922 1  |-  ( A 
~~  B  ->  ( E. f  f : om -onto-> ( A 1o )  ->  E. g  g : om -onto-> ( B 1o ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1515   class class class wbr 4044   omcom 4638    o. ccom 4679   -onto->wfo 5269   -1-1-onto->wf1o 5270   1oc1o 6495    ~~ cen 6825   ⊔ cdju 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-er 6620  df-en 6828  df-dju 7140  df-inl 7149  df-inr 7150
This theorem is referenced by:  enct  12804
  Copyright terms: Public domain W3C validator