Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enctlem | Unicode version |
Description: Lemma for enct 12388. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.) |
Ref | Expression |
---|---|
enctlem | ⊔ ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6403 | . . . . 5 | |
2 | 1 | enref 6743 | . . . 4 |
3 | djuen 7188 | . . . 4 ⊔ ⊔ | |
4 | 2, 3 | mpan2 423 | . . 3 ⊔ ⊔ |
5 | bren 6725 | . . 3 ⊔ ⊔ ⊔ ⊔ | |
6 | 4, 5 | sylib 121 | . 2 ⊔ ⊔ |
7 | f1ofo 5449 | . . . . . 6 ⊔ ⊔ ⊔ ⊔ | |
8 | 7 | ad2antlr 486 | . . . . 5 ⊔ ⊔ ⊔ ⊔ ⊔ |
9 | foco 5430 | . . . . . 6 ⊔ ⊔ ⊔ ⊔ | |
10 | vex 2733 | . . . . . . . 8 | |
11 | vex 2733 | . . . . . . . 8 | |
12 | 10, 11 | coex 5156 | . . . . . . 7 |
13 | foeq1 5416 | . . . . . . 7 ⊔ ⊔ | |
14 | 12, 13 | spcev 2825 | . . . . . 6 ⊔ ⊔ |
15 | 9, 14 | syl 14 | . . . . 5 ⊔ ⊔ ⊔ ⊔ |
16 | 8, 15 | sylancom 418 | . . . 4 ⊔ ⊔ ⊔ ⊔ |
17 | 16 | ex 114 | . . 3 ⊔ ⊔ ⊔ ⊔ |
18 | 17 | exlimdv 1812 | . 2 ⊔ ⊔ ⊔ ⊔ |
19 | 6, 18 | exlimddv 1891 | 1 ⊔ ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1485 class class class wbr 3989 com 4574 ccom 4615 wfo 5196 wf1o 5197 c1o 6388 cen 6716 ⊔ cdju 7014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-er 6513 df-en 6719 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: enct 12388 |
Copyright terms: Public domain | W3C validator |