| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coires1 | GIF version | ||
| Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| coires1 | ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cocnvcnv1 5180 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = (𝐴 ∘ I ) | |
| 2 | relcnv 5047 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
| 3 | coi1 5185 | . . . . . 6 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ∘ I ) = ◡◡𝐴) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = ◡◡𝐴 |
| 5 | 1, 4 | eqtr3i 2219 | . . . 4 ⊢ (𝐴 ∘ I ) = ◡◡𝐴 |
| 6 | 5 | reseq1i 4942 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
| 7 | resco 5174 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) | |
| 8 | 6, 7 | eqtr3i 2219 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) |
| 9 | rescnvcnv 5132 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 10 | 8, 9 | eqtr3i 2219 | 1 ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 I cid 4323 ◡ccnv 4662 ↾ cres 4665 ∘ ccom 4667 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 |
| This theorem is referenced by: funcoeqres 5535 |
| Copyright terms: Public domain | W3C validator |