ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coires1 GIF version

Theorem coires1 5219
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 5212 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 5079 . . . . . 6 Rel 𝐴
3 coi1 5217 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2230 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 4974 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 5206 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2230 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 5164 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2230 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373   I cid 4353  ccnv 4692  cres 4695  ccom 4697  Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705
This theorem is referenced by:  funcoeqres  5575
  Copyright terms: Public domain W3C validator