Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > coires1 | GIF version |
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
coires1 | ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cocnvcnv1 5114 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = (𝐴 ∘ I ) | |
2 | relcnv 4982 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
3 | coi1 5119 | . . . . . 6 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ∘ I ) = ◡◡𝐴) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = ◡◡𝐴 |
5 | 1, 4 | eqtr3i 2188 | . . . 4 ⊢ (𝐴 ∘ I ) = ◡◡𝐴 |
6 | 5 | reseq1i 4880 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
7 | resco 5108 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) | |
8 | 6, 7 | eqtr3i 2188 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) |
9 | rescnvcnv 5066 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
10 | 8, 9 | eqtr3i 2188 | 1 ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 I cid 4266 ◡ccnv 4603 ↾ cres 4606 ∘ ccom 4608 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 |
This theorem is referenced by: funcoeqres 5463 |
Copyright terms: Public domain | W3C validator |