| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coires1 | GIF version | ||
| Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| coires1 | ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cocnvcnv1 5212 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = (𝐴 ∘ I ) | |
| 2 | relcnv 5079 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
| 3 | coi1 5217 | . . . . . 6 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ∘ I ) = ◡◡𝐴) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = ◡◡𝐴 |
| 5 | 1, 4 | eqtr3i 2230 | . . . 4 ⊢ (𝐴 ∘ I ) = ◡◡𝐴 |
| 6 | 5 | reseq1i 4974 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
| 7 | resco 5206 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) | |
| 8 | 6, 7 | eqtr3i 2230 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) |
| 9 | rescnvcnv 5164 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 10 | 8, 9 | eqtr3i 2230 | 1 ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 I cid 4353 ◡ccnv 4692 ↾ cres 4695 ∘ ccom 4697 Rel wrel 4698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 |
| This theorem is referenced by: funcoeqres 5575 |
| Copyright terms: Public domain | W3C validator |