ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzdiffz0 Unicode version

Theorem fz0fzdiffz0 10251
Description: The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
Assertion
Ref Expression
fz0fzdiffz0  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( K  -  M
)  e.  ( 0 ... N ) )

Proof of Theorem fz0fzdiffz0
StepHypRef Expression
1 fz0fzelfz0 10248 . . 3  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  ->  K  e.  ( 0 ... N ) )
2 elfzle1 10148 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  M  <_  K )
32adantl 277 . . . . . 6  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  ->  M  <_  K )
43adantl 277 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  M  <_  K
)
5 elfznn0 10235 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  M  e.  NN0 )
65adantr 276 . . . . . 6  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  ->  M  e.  NN0 )
7 elfznn0 10235 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
8 nn0sub 9438 . . . . . 6  |-  ( ( M  e.  NN0  /\  K  e.  NN0 )  -> 
( M  <_  K  <->  ( K  -  M )  e.  NN0 ) )
96, 7, 8syl2anr 290 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( M  <_  K 
<->  ( K  -  M
)  e.  NN0 )
)
104, 9mpbid 147 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( K  -  M )  e.  NN0 )
11 elfz3nn0 10236 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
1211adantr 276 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  N  e.  NN0 )
13 elfz2nn0 10233 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
14 elfz2 10136 . . . . . . . . . . 11  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
15 zsubcl 9412 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  -  M
)  e.  ZZ )
1615zred 9494 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  -  M
)  e.  RR )
1716ancoms 268 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  -  M
)  e.  RR )
18173adant2 1018 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  -  M )  e.  RR )
19 zre 9375 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ZZ  ->  K  e.  RR )
20193ad2ant3 1022 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  K  e.  RR )
21 zre 9375 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ZZ  ->  N  e.  RR )
22213ad2ant2 1021 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  N  e.  RR )
2318, 20, 223jca 1179 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  -  M
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
2423adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  ( ( K  -  M )  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
2524adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  /\  K  <_  N )  ->  (
( K  -  M
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
26 nn0ge0 9319 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  NN0  ->  0  <_  M )
2726adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  0  <_  M
)
28 nn0re 9303 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  NN0  ->  M  e.  RR )
29 subge02 8550 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  M  <->  ( K  -  M )  <_  K ) )
3020, 28, 29syl2an 289 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  ( 0  <_  M 
<->  ( K  -  M
)  <_  K )
)
3127, 30mpbid 147 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  ( K  -  M )  <_  K
)
3231anim1i 340 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  /\  K  <_  N )  ->  (
( K  -  M
)  <_  K  /\  K  <_  N ) )
33 letr 8154 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  -  M
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( ( K  -  M )  <_  K  /\  K  <_  N )  ->  ( K  -  M )  <_  N
) )
3425, 32, 33sylc 62 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  /\  K  <_  N )  ->  ( K  -  M )  <_  N )
3534exp31 364 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( K  <_  N  ->  ( K  -  M )  <_  N ) ) )
3635a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( K  <_  N  ->  ( K  -  M )  <_  N ) ) ) )
3736com14 88 . . . . . . . . . . . . 13  |-  ( K  <_  N  ->  (
( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M
)  <_  N )
) ) )
3837adantl 277 . . . . . . . . . . . 12  |-  ( ( M  <_  K  /\  K  <_  N )  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M )  <_  N ) ) ) )
3938impcom 125 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M )  <_  N
) ) )
4014, 39sylbi 121 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M )  <_  N ) ) )
4140com13 80 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( M  e.  NN0  ->  ( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N ) ) )
4241impcom 125 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N
) )
43423adant3 1019 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N ) )
4413, 43sylbi 121 . . . . . 6  |-  ( M  e.  ( 0 ... N )  ->  ( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N ) )
4544imp 124 . . . . 5  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( K  -  M
)  <_  N )
4645adantl 277 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( K  -  M )  <_  N
)
4710, 12, 463jca 1179 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( ( K  -  M )  e. 
NN0  /\  N  e.  NN0 
/\  ( K  -  M )  <_  N
) )
481, 47mpancom 422 . 2  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( ( K  -  M )  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M
)  <_  N )
)
49 elfz2nn0 10233 . 2  |-  ( ( K  -  M )  e.  ( 0 ... N )  <->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) )
5048, 49sylibr 134 1  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( K  -  M
)  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2175   class class class wbr 4043  (class class class)co 5943   RRcr 7923   0cc0 7924    <_ cle 8107    - cmin 8242   NN0cn0 9294   ZZcz 9371   ...cfz 10129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator