ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzdiffz0 Unicode version

Theorem fz0fzdiffz0 10079
Description: The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
Assertion
Ref Expression
fz0fzdiffz0  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( K  -  M
)  e.  ( 0 ... N ) )

Proof of Theorem fz0fzdiffz0
StepHypRef Expression
1 fz0fzelfz0 10076 . . 3  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  ->  K  e.  ( 0 ... N ) )
2 elfzle1 9976 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  M  <_  K )
32adantl 275 . . . . . 6  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  ->  M  <_  K )
43adantl 275 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  M  <_  K
)
5 elfznn0 10063 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  M  e.  NN0 )
65adantr 274 . . . . . 6  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  ->  M  e.  NN0 )
7 elfznn0 10063 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
8 nn0sub 9271 . . . . . 6  |-  ( ( M  e.  NN0  /\  K  e.  NN0 )  -> 
( M  <_  K  <->  ( K  -  M )  e.  NN0 ) )
96, 7, 8syl2anr 288 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( M  <_  K 
<->  ( K  -  M
)  e.  NN0 )
)
104, 9mpbid 146 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( K  -  M )  e.  NN0 )
11 elfz3nn0 10064 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
1211adantr 274 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  N  e.  NN0 )
13 elfz2nn0 10061 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
14 elfz2 9965 . . . . . . . . . . 11  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
15 zsubcl 9246 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  -  M
)  e.  ZZ )
1615zred 9327 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  -  M
)  e.  RR )
1716ancoms 266 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  -  M
)  e.  RR )
18173adant2 1011 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  -  M )  e.  RR )
19 zre 9209 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ZZ  ->  K  e.  RR )
20193ad2ant3 1015 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  K  e.  RR )
21 zre 9209 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ZZ  ->  N  e.  RR )
22213ad2ant2 1014 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  N  e.  RR )
2318, 20, 223jca 1172 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  -  M
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
2423adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  ( ( K  -  M )  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
2524adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  /\  K  <_  N )  ->  (
( K  -  M
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
26 nn0ge0 9153 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  NN0  ->  0  <_  M )
2726adantl 275 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  0  <_  M
)
28 nn0re 9137 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  NN0  ->  M  e.  RR )
29 subge02 8390 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  M  <->  ( K  -  M )  <_  K ) )
3020, 28, 29syl2an 287 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  ( 0  <_  M 
<->  ( K  -  M
)  <_  K )
)
3127, 30mpbid 146 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  ( K  -  M )  <_  K
)
3231anim1i 338 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  /\  K  <_  N )  ->  (
( K  -  M
)  <_  K  /\  K  <_  N ) )
33 letr 7995 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  -  M
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( ( K  -  M )  <_  K  /\  K  <_  N )  ->  ( K  -  M )  <_  N
) )
3425, 32, 33sylc 62 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  /\  K  <_  N )  ->  ( K  -  M )  <_  N )
3534exp31 362 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( K  <_  N  ->  ( K  -  M )  <_  N ) ) )
3635a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( K  <_  N  ->  ( K  -  M )  <_  N ) ) ) )
3736com14 88 . . . . . . . . . . . . 13  |-  ( K  <_  N  ->  (
( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M
)  <_  N )
) ) )
3837adantl 275 . . . . . . . . . . . 12  |-  ( ( M  <_  K  /\  K  <_  N )  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M )  <_  N ) ) ) )
3938impcom 124 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M )  <_  N
) ) )
4014, 39sylbi 120 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M )  <_  N ) ) )
4140com13 80 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( M  e.  NN0  ->  ( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N ) ) )
4241impcom 124 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N
) )
43423adant3 1012 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N ) )
4413, 43sylbi 120 . . . . . 6  |-  ( M  e.  ( 0 ... N )  ->  ( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N ) )
4544imp 123 . . . . 5  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( K  -  M
)  <_  N )
4645adantl 275 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( K  -  M )  <_  N
)
4710, 12, 463jca 1172 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( ( K  -  M )  e. 
NN0  /\  N  e.  NN0 
/\  ( K  -  M )  <_  N
) )
481, 47mpancom 420 . 2  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( ( K  -  M )  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M
)  <_  N )
)
49 elfz2nn0 10061 . 2  |-  ( ( K  -  M )  e.  ( 0 ... N )  <->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) )
5048, 49sylibr 133 1  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( K  -  M
)  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    e. wcel 2141   class class class wbr 3987  (class class class)co 5851   RRcr 7766   0cc0 7767    <_ cle 7948    - cmin 8083   NN0cn0 9128   ZZcz 9205   ...cfz 9958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-ltadd 7883
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-inn 8872  df-n0 9129  df-z 9206  df-uz 9481  df-fz 9959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator