ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzdiffz0 Unicode version

Theorem fz0fzdiffz0 10116
Description: The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
Assertion
Ref Expression
fz0fzdiffz0  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( K  -  M
)  e.  ( 0 ... N ) )

Proof of Theorem fz0fzdiffz0
StepHypRef Expression
1 fz0fzelfz0 10113 . . 3  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  ->  K  e.  ( 0 ... N ) )
2 elfzle1 10013 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  M  <_  K )
32adantl 277 . . . . . 6  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  ->  M  <_  K )
43adantl 277 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  M  <_  K
)
5 elfznn0 10100 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  M  e.  NN0 )
65adantr 276 . . . . . 6  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  ->  M  e.  NN0 )
7 elfznn0 10100 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
8 nn0sub 9308 . . . . . 6  |-  ( ( M  e.  NN0  /\  K  e.  NN0 )  -> 
( M  <_  K  <->  ( K  -  M )  e.  NN0 ) )
96, 7, 8syl2anr 290 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( M  <_  K 
<->  ( K  -  M
)  e.  NN0 )
)
104, 9mpbid 147 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( K  -  M )  e.  NN0 )
11 elfz3nn0 10101 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
1211adantr 276 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  N  e.  NN0 )
13 elfz2nn0 10098 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
14 elfz2 10002 . . . . . . . . . . 11  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
15 zsubcl 9283 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  -  M
)  e.  ZZ )
1615zred 9364 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  -  M
)  e.  RR )
1716ancoms 268 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  -  M
)  e.  RR )
18173adant2 1016 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  -  M )  e.  RR )
19 zre 9246 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ZZ  ->  K  e.  RR )
20193ad2ant3 1020 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  K  e.  RR )
21 zre 9246 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ZZ  ->  N  e.  RR )
22213ad2ant2 1019 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  N  e.  RR )
2318, 20, 223jca 1177 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  -  M
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
2423adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  ( ( K  -  M )  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
2524adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  /\  K  <_  N )  ->  (
( K  -  M
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
26 nn0ge0 9190 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  NN0  ->  0  <_  M )
2726adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  0  <_  M
)
28 nn0re 9174 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  NN0  ->  M  e.  RR )
29 subge02 8425 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  M  <->  ( K  -  M )  <_  K ) )
3020, 28, 29syl2an 289 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  ( 0  <_  M 
<->  ( K  -  M
)  <_  K )
)
3127, 30mpbid 147 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  ->  ( K  -  M )  <_  K
)
3231anim1i 340 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  /\  K  <_  N )  ->  (
( K  -  M
)  <_  K  /\  K  <_  N ) )
33 letr 8030 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  -  M
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( ( K  -  M )  <_  K  /\  K  <_  N )  ->  ( K  -  M )  <_  N
) )
3425, 32, 33sylc 62 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  M  e.  NN0 )  /\  K  <_  N )  ->  ( K  -  M )  <_  N )
3534exp31 364 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( K  <_  N  ->  ( K  -  M )  <_  N ) ) )
3635a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( K  <_  N  ->  ( K  -  M )  <_  N ) ) ) )
3736com14 88 . . . . . . . . . . . . 13  |-  ( K  <_  N  ->  (
( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M
)  <_  N )
) ) )
3837adantl 277 . . . . . . . . . . . 12  |-  ( ( M  <_  K  /\  K  <_  N )  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M )  <_  N ) ) ) )
3938impcom 125 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M )  <_  N
) ) )
4014, 39sylbi 121 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( K  -  M )  <_  N ) ) )
4140com13 80 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( M  e.  NN0  ->  ( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N ) ) )
4241impcom 125 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N
) )
43423adant3 1017 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N ) )
4413, 43sylbi 121 . . . . . 6  |-  ( M  e.  ( 0 ... N )  ->  ( K  e.  ( M ... N )  ->  ( K  -  M )  <_  N ) )
4544imp 124 . . . . 5  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( K  -  M
)  <_  N )
4645adantl 277 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( K  -  M )  <_  N
)
4710, 12, 463jca 1177 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  ( M  e.  (
0 ... N )  /\  K  e.  ( M ... N ) ) )  ->  ( ( K  -  M )  e. 
NN0  /\  N  e.  NN0 
/\  ( K  -  M )  <_  N
) )
481, 47mpancom 422 . 2  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( ( K  -  M )  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M
)  <_  N )
)
49 elfz2nn0 10098 . 2  |-  ( ( K  -  M )  e.  ( 0 ... N )  <->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) )
5048, 49sylibr 134 1  |-  ( ( M  e.  ( 0 ... N )  /\  K  e.  ( M ... N ) )  -> 
( K  -  M
)  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   RRcr 7801   0cc0 7802    <_ cle 7983    - cmin 8118   NN0cn0 9165   ZZcz 9242   ...cfz 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator