ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclpr Unicode version

Theorem addclpr 7511
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
addclpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )

Proof of Theorem addclpr
Dummy variables  x  y  z  w  v  g  h  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iplp 7442 . . . 4  |-  +P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y  +Q  z
) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y  +Q  z
) ) } >. )
21genpelxp 7485 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  ( ~P Q.  X.  ~P Q. ) )
3 addclnq 7349 . . . 4  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  e.  Q. )
41, 3genpml 7491 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A  +P.  B
) ) )
51, 3genpmu 7492 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. r  e.  Q.  r  e.  ( 2nd `  ( A  +P.  B
) ) )
62, 4, 5jca32 310 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  ( A  +P.  B ) )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
7 ltanqg 7374 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z  +Q  x )  <Q  (
z  +Q  y ) ) )
8 addcomnqg 7355 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  +Q  y
)  =  ( y  +Q  x ) )
9 addnqprl 7503 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B
) ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  ->  x  e.  ( 1st `  ( A  +P.  B ) ) ) )
101, 3, 7, 8, 9genprndl 7495 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  ( q  e.  ( 1st `  ( A  +P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  +P.  B ) ) ) ) )
11 addnqpru 7504 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( g  +Q  h )  <Q  x  ->  x  e.  ( 2nd `  ( A  +P.  B
) ) ) )
121, 3, 7, 8, 11genprndu 7496 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  ( A  +P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
1310, 12jca 306 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A. q  e. 
Q.  ( q  e.  ( 1st `  ( A  +P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  +P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  +P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) ) ) ) )
141, 3, 7, 8genpdisj 7497 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  +P.  B ) )  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) ) )
15 addlocpr 7510 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
1613, 14, 153jca 1177 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  ( A  +P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  +P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  +P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  +P.  B ) )  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) )  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) ) )
17 elnp1st2nd 7450 . 2  |-  ( ( A  +P.  B )  e.  P.  <->  ( (
( A  +P.  B
)  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  ( A  +P.  B ) )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  ( A  +P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  +P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  +P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  +P.  B ) )  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) )  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) ) ) )
186, 16, 17sylanbrc 417 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    e. wcel 2146   A.wral 2453   E.wrex 2454   ~Pcpw 3572   class class class wbr 3998    X. cxp 4618   ` cfv 5208  (class class class)co 5865   1stc1st 6129   2ndc2nd 6130   Q.cnq 7254    +Q cplq 7256    <Q cltq 7259   P.cnp 7265    +P. cpp 7267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-2o 6408  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327  df-enq0 7398  df-nq0 7399  df-0nq0 7400  df-plq0 7401  df-mq0 7402  df-inp 7440  df-iplp 7442
This theorem is referenced by:  addnqprlemfl  7533  addnqprlemfu  7534  addnqpr  7535  addassprg  7553  distrlem1prl  7556  distrlem1pru  7557  distrlem4prl  7558  distrlem4pru  7559  distrprg  7562  ltaddpr  7571  ltexpri  7587  addcanprleml  7588  addcanprlemu  7589  ltaprlem  7592  ltaprg  7593  prplnqu  7594  addextpr  7595  caucvgprlemcanl  7618  cauappcvgprlemladdru  7630  cauappcvgprlemladdrl  7631  cauappcvgprlemladd  7632  cauappcvgprlem1  7633  caucvgprlemladdrl  7652  caucvgprlem1  7653  caucvgprprlemnbj  7667  caucvgprprlemopu  7673  caucvgprprlemloc  7677  caucvgprprlemexbt  7680  caucvgprprlemexb  7681  caucvgprprlemaddq  7682  caucvgprprlem2  7684  enrer  7709  addcmpblnr  7713  mulcmpblnrlemg  7714  mulcmpblnr  7715  ltsrprg  7721  1sr  7725  m1r  7726  addclsr  7727  mulclsr  7728  addasssrg  7730  mulasssrg  7732  distrsrg  7733  m1p1sr  7734  m1m1sr  7735  lttrsr  7736  ltsosr  7738  0lt1sr  7739  0idsr  7741  1idsr  7742  00sr  7743  ltasrg  7744  recexgt0sr  7747  mulgt0sr  7752  aptisr  7753  mulextsr1lem  7754  mulextsr1  7755  archsr  7756  srpospr  7757  prsrcl  7758  prsradd  7760  prsrlt  7761  caucvgsrlemcau  7767  caucvgsrlemgt1  7769  mappsrprg  7778  map2psrprg  7779  pitonnlem1p1  7820  pitonnlem2  7821  pitonn  7822  pitoregt0  7823  pitore  7824  recnnre  7825  recidpirqlemcalc  7831  recidpirq  7832
  Copyright terms: Public domain W3C validator