ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclpr Unicode version

Theorem addclpr 7286
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
addclpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )

Proof of Theorem addclpr
Dummy variables  x  y  z  w  v  g  h  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iplp 7217 . . . 4  |-  +P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y  +Q  z
) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y  +Q  z
) ) } >. )
21genpelxp 7260 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  ( ~P Q.  X.  ~P Q. ) )
3 addclnq 7124 . . . 4  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  e.  Q. )
41, 3genpml 7266 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A  +P.  B
) ) )
51, 3genpmu 7267 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. r  e.  Q.  r  e.  ( 2nd `  ( A  +P.  B
) ) )
62, 4, 5jca32 306 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  ( A  +P.  B ) )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
7 ltanqg 7149 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z  +Q  x )  <Q  (
z  +Q  y ) ) )
8 addcomnqg 7130 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  +Q  y
)  =  ( y  +Q  x ) )
9 addnqprl 7278 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B
) ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  ->  x  e.  ( 1st `  ( A  +P.  B ) ) ) )
101, 3, 7, 8, 9genprndl 7270 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  ( q  e.  ( 1st `  ( A  +P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  +P.  B ) ) ) ) )
11 addnqpru 7279 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( g  +Q  h )  <Q  x  ->  x  e.  ( 2nd `  ( A  +P.  B
) ) ) )
121, 3, 7, 8, 11genprndu 7271 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  ( A  +P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
1310, 12jca 302 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A. q  e. 
Q.  ( q  e.  ( 1st `  ( A  +P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  +P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  +P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) ) ) ) )
141, 3, 7, 8genpdisj 7272 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  +P.  B ) )  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) ) )
15 addlocpr 7285 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  ( 1st `  ( A  +P.  B
) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
1613, 14, 153jca 1142 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  ( A  +P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  +P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  +P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  +P.  B ) )  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) )  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) ) )
17 elnp1st2nd 7225 . 2  |-  ( ( A  +P.  B )  e.  P.  <->  ( (
( A  +P.  B
)  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  ( A  +P.  B ) )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  ( A  +P.  B ) ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  ( A  +P.  B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A  +P.  B ) ) ) )  /\  A. r  e. 
Q.  ( r  e.  ( 2nd `  ( A  +P.  B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A  +P.  B ) )  /\  q  e.  ( 2nd `  ( A  +P.  B ) ) )  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) ) ) )
186, 16, 17sylanbrc 411 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680    /\ w3a 943    e. wcel 1461   A.wral 2388   E.wrex 2389   ~Pcpw 3474   class class class wbr 3893    X. cxp 4495   ` cfv 5079  (class class class)co 5726   1stc1st 5987   2ndc2nd 5988   Q.cnq 7029    +Q cplq 7031    <Q cltq 7034   P.cnp 7040    +P. cpp 7042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-eprel 4169  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5989  df-2nd 5990  df-recs 6153  df-irdg 6218  df-1o 6264  df-2o 6265  df-oadd 6268  df-omul 6269  df-er 6380  df-ec 6382  df-qs 6386  df-ni 7053  df-pli 7054  df-mi 7055  df-lti 7056  df-plpq 7093  df-mpq 7094  df-enq 7096  df-nqqs 7097  df-plqqs 7098  df-mqqs 7099  df-1nqqs 7100  df-rq 7101  df-ltnqqs 7102  df-enq0 7173  df-nq0 7174  df-0nq0 7175  df-plq0 7176  df-mq0 7177  df-inp 7215  df-iplp 7217
This theorem is referenced by:  addnqprlemfl  7308  addnqprlemfu  7309  addnqpr  7310  addassprg  7328  distrlem1prl  7331  distrlem1pru  7332  distrlem4prl  7333  distrlem4pru  7334  distrprg  7337  ltaddpr  7346  ltexpri  7362  addcanprleml  7363  addcanprlemu  7364  ltaprlem  7367  ltaprg  7368  prplnqu  7369  addextpr  7370  caucvgprlemcanl  7393  cauappcvgprlemladdru  7405  cauappcvgprlemladdrl  7406  cauappcvgprlemladd  7407  cauappcvgprlem1  7408  caucvgprlemladdrl  7427  caucvgprlem1  7428  caucvgprprlemnbj  7442  caucvgprprlemopu  7448  caucvgprprlemloc  7452  caucvgprprlemexbt  7455  caucvgprprlemexb  7456  caucvgprprlemaddq  7457  caucvgprprlem2  7459  enrer  7471  addcmpblnr  7475  mulcmpblnrlemg  7476  mulcmpblnr  7477  ltsrprg  7483  1sr  7487  m1r  7488  addclsr  7489  mulclsr  7490  addasssrg  7492  mulasssrg  7494  distrsrg  7495  m1p1sr  7496  m1m1sr  7497  lttrsr  7498  ltsosr  7500  0lt1sr  7501  0idsr  7503  1idsr  7504  00sr  7505  ltasrg  7506  recexgt0sr  7509  mulgt0sr  7513  aptisr  7514  mulextsr1lem  7515  mulextsr1  7516  archsr  7517  srpospr  7518  prsrcl  7519  prsradd  7521  prsrlt  7522  caucvgsrlemcau  7528  caucvgsrlemgt1  7530  pitonnlem1p1  7574  pitonnlem2  7575  pitonn  7576  pitoregt0  7577  pitore  7578  recnnre  7579  recidpirqlemcalc  7585  recidpirq  7586
  Copyright terms: Public domain W3C validator