ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemru Unicode version

Theorem ltexprlemru 7727
Description: Lemma for ltexpri 7728. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemru  |-  ( A 
<P  B  ->  ( 2nd `  B )  C_  ( 2nd `  ( A  +P.  C ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlemru
Dummy variables  z  w  u  v  f  g  h  q  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7620 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
21brel 4728 . . . . . . 7  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simprd 114 . . . . . 6  |-  ( A 
<P  B  ->  B  e. 
P. )
4 prop 7590 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
6 prnminu 7604 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  w  e.  ( 2nd `  B ) )  ->  E. t  e.  ( 2nd `  B ) t 
<Q  w )
75, 6sylan 283 . . . 4  |-  ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  ->  E. t  e.  ( 2nd `  B ) t 
<Q  w )
8 simprr 531 . . . . . 6  |-  ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  ->  t  <Q  w )
9 elprnqu 7597 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  t  e.  ( 2nd `  B ) )  -> 
t  e.  Q. )
105, 9sylan 283 . . . . . . . 8  |-  ( ( A  <P  B  /\  t  e.  ( 2nd `  B ) )  -> 
t  e.  Q. )
1110ad2ant2r 509 . . . . . . 7  |-  ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  ->  t  e.  Q. )
12 elprnqu 7597 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  w  e.  ( 2nd `  B ) )  ->  w  e.  Q. )
135, 12sylan 283 . . . . . . . 8  |-  ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  ->  w  e.  Q. )
1413adantr 276 . . . . . . 7  |-  ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  ->  w  e.  Q. )
15 ltexnqq 7523 . . . . . . 7  |-  ( ( t  e.  Q.  /\  w  e.  Q. )  ->  ( t  <Q  w  <->  E. v  e.  Q.  (
t  +Q  v )  =  w ) )
1611, 14, 15syl2anc 411 . . . . . 6  |-  ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  ->  (
t  <Q  w  <->  E. v  e.  Q.  ( t  +Q  v )  =  w ) )
178, 16mpbid 147 . . . . 5  |-  ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  ->  E. v  e.  Q.  ( t  +Q  v )  =  w )
182simpld 112 . . . . . . . . . 10  |-  ( A 
<P  B  ->  A  e. 
P. )
19 prop 7590 . . . . . . . . . 10  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2018, 19syl 14 . . . . . . . . 9  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
21 prarloc 7618 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  v  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
2220, 21sylan 283 . . . . . . . 8  |-  ( ( A  <P  B  /\  v  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
2322adantlr 477 . . . . . . 7  |-  ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  v  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
2423ad2ant2r 509 . . . . . 6  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B
)  /\  t  <Q  w ) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  ->  E. z  e.  ( 1st `  A
) E. u  e.  ( 2nd `  A
) u  <Q  (
z  +Q  v ) )
25 simplll 533 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B
)  /\  t  <Q  w ) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  ->  A  <P  B )
2625ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  A  <P  B )
27 ltdfpr 7621 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  B ) ) ) )
2827biimpd 144 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )
292, 28mpcom 36 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  B ) ) )
3026, 29syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  B ) ) )
3125adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 2nd `  B
) )  /\  (
t  e.  ( 2nd `  B )  /\  t  <Q  w ) )  /\  ( v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  ->  A  <P  B )
3231ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
q  e.  Q.  /\  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )  ->  A  <P  B )
33 simplrl 535 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  z  e.  ( 1st `  A
) )
3433adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
q  e.  Q.  /\  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )  -> 
z  e.  ( 1st `  A ) )
35 simprrl 539 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
q  e.  Q.  /\  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )  -> 
q  e.  ( 2nd `  A ) )
36 prltlu 7602 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  ->  z  <Q  q )
3720, 36syl3an1 1283 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  ->  z  <Q  q )
3832, 34, 35, 37syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
q  e.  Q.  /\  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )  -> 
z  <Q  q )
39 simprrr 540 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
q  e.  Q.  /\  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )  -> 
q  e.  ( 1st `  B ) )
40 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B
)  /\  t  <Q  w ) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  ->  t  e.  ( 2nd `  B ) )
4140adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 2nd `  B
) )  /\  (
t  e.  ( 2nd `  B )  /\  t  <Q  w ) )  /\  ( v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  ->  t  e.  ( 2nd `  B
) )
4241ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
q  e.  Q.  /\  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )  -> 
t  e.  ( 2nd `  B ) )
43 prltlu 7602 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  q  e.  ( 1st `  B )  /\  t  e.  ( 2nd `  B
) )  ->  q  <Q  t )
445, 43syl3an1 1283 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  q  e.  ( 1st `  B )  /\  t  e.  ( 2nd `  B
) )  ->  q  <Q  t )
4532, 39, 42, 44syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
q  e.  Q.  /\  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )  -> 
q  <Q  t )
46 ltsonq 7513 . . . . . . . . . . . . 13  |-  <Q  Or  Q.
47 ltrelnq 7480 . . . . . . . . . . . . 13  |-  <Q  C_  ( Q.  X.  Q. )
4846, 47sotri 5079 . . . . . . . . . . . 12  |-  ( ( z  <Q  q  /\  q  <Q  t )  -> 
z  <Q  t )
4938, 45, 48syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
q  e.  Q.  /\  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )  -> 
z  <Q  t )
5030, 49rexlimddv 2628 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  z  <Q  t )
51 ltexnqi 7524 . . . . . . . . . 10  |-  ( z 
<Q  t  ->  E. s  e.  Q.  ( z  +Q  s )  =  t )
5250, 51syl 14 . . . . . . . . 9  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  E. s  e.  Q.  ( z  +Q  s )  =  t )
53 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 2nd `  B
) )  /\  (
t  e.  ( 2nd `  B )  /\  t  <Q  w ) )  /\  ( v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  ->  (
t  +Q  v )  =  w )
5453ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  ( t  +Q  v )  =  w )
55 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  ( z  +Q  s )  =  t )
56 oveq1 5953 . . . . . . . . . . . . 13  |-  ( ( z  +Q  s )  =  t  ->  (
( z  +Q  s
)  +Q  v )  =  ( t  +Q  v ) )
5756eqeq1d 2214 . . . . . . . . . . . 12  |-  ( ( z  +Q  s )  =  t  ->  (
( ( z  +Q  s )  +Q  v
)  =  w  <->  ( t  +Q  v )  =  w ) )
5855, 57syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  ( (
( z  +Q  s
)  +Q  v )  =  w  <->  ( t  +Q  v )  =  w ) )
5954, 58mpbird 167 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  ( (
z  +Q  s )  +Q  v )  =  w )
60 elprnql 7596 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
6120, 60sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
6261adantlr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
6362ad2ant2r 509 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B
)  /\  t  <Q  w ) )  /\  (
z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A
) ) )  -> 
z  e.  Q. )
6463adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 2nd `  B
) )  /\  (
t  e.  ( 2nd `  B )  /\  t  <Q  w ) )  /\  ( v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  ->  z  e.  Q. )
6564ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  z  e.  Q. )
66 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 2nd `  B
) )  /\  (
t  e.  ( 2nd `  B )  /\  t  <Q  w ) )  /\  ( v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  ->  v  e.  Q. )
6766ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  v  e.  Q. )
68 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  s  e.  Q. )
69 addcomnqg 7496 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
7069adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B
)  /\  t  <Q  w ) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  /\  ( f  e.  Q.  /\  g  e.  Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
71 addassnqg 7497 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
7271adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B
)  /\  t  <Q  w ) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e. 
Q. ) )  -> 
( ( f  +Q  g )  +Q  h
)  =  ( f  +Q  ( g  +Q  h ) ) )
7365, 67, 68, 70, 72caov32d 6129 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  ( (
z  +Q  v )  +Q  s )  =  ( ( z  +Q  s )  +Q  v
) )
74 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  u  <Q  ( z  +Q  v
) )
75 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  u  e.  ( 2nd `  A
) )
76 prcunqu 7600 . . . . . . . . . . . . . . . 16  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  u  e.  ( 2nd `  A ) )  -> 
( u  <Q  (
z  +Q  v )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
7720, 76sylan 283 . . . . . . . . . . . . . . 15  |-  ( ( A  <P  B  /\  u  e.  ( 2nd `  A ) )  -> 
( u  <Q  (
z  +Q  v )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
7826, 75, 77syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
u  <Q  ( z  +Q  v )  ->  (
z  +Q  v )  e.  ( 2nd `  A
) ) )
7974, 78mpd 13 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  +Q  v )  e.  ( 2nd `  A
) )
8079adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) )
8133adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  z  e.  ( 1st `  A ) )
8241ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  t  e.  ( 2nd `  B ) )
8355, 82eqeltrd 2282 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  ( z  +Q  s )  e.  ( 2nd `  B ) )
84 eleq1 2268 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
y  e.  ( 1st `  A )  <->  z  e.  ( 1st `  A ) ) )
85 oveq1 5953 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
y  +Q  s )  =  ( z  +Q  s ) )
8685eleq1d 2274 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( y  +Q  s
)  e.  ( 2nd `  B )  <->  ( z  +Q  s )  e.  ( 2nd `  B ) ) )
8784, 86anbi12d 473 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  (
( y  e.  ( 1st `  A )  /\  ( y  +Q  s )  e.  ( 2nd `  B ) )  <->  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  s )  e.  ( 2nd `  B ) ) ) )
8887spcegv 2861 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( 1st `  A
)  ->  ( (
z  e.  ( 1st `  A )  /\  (
z  +Q  s )  e.  ( 2nd `  B
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  s )  e.  ( 2nd `  B ) ) ) )
8988anabsi5 579 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( 1st `  A )  /\  (
z  +Q  s )  e.  ( 2nd `  B
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  s )  e.  ( 2nd `  B ) ) )
9081, 83, 89syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  s )  e.  ( 2nd `  B ) ) )
91 ltexprlem.1 . . . . . . . . . . . . . 14  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
9291ltexprlemelu 7714 . . . . . . . . . . . . 13  |-  ( s  e.  ( 2nd `  C
)  <->  ( s  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  s )  e.  ( 2nd `  B ) ) ) )
9368, 90, 92sylanbrc 417 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  s  e.  ( 2nd `  C ) )
9431ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  A  <P  B )
9594, 18syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  A  e.  P. )
9691ltexprlempr 7723 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  C  e. 
P. )
9794, 96syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  C  e.  P. )
98 df-iplp 7583 . . . . . . . . . . . . . 14  |-  +P.  =  ( x  e.  P. ,  w  e.  P.  |->  <. { z  e.  Q.  |  E. f  e.  Q.  E. v  e.  Q.  (
f  e.  ( 1st `  x )  /\  v  e.  ( 1st `  w
)  /\  z  =  ( f  +Q  v
) ) } ,  { z  e.  Q.  |  E. f  e.  Q.  E. v  e.  Q.  (
f  e.  ( 2nd `  x )  /\  v  e.  ( 2nd `  w
)  /\  z  =  ( f  +Q  v
) ) } >. )
99 addclnq 7490 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  v  e.  Q. )  ->  ( f  +Q  v
)  e.  Q. )
10098, 99genppreclu 7630 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( ( z  +Q  v )  e.  ( 2nd `  A
)  /\  s  e.  ( 2nd `  C ) )  ->  ( (
z  +Q  v )  +Q  s )  e.  ( 2nd `  ( A  +P.  C ) ) ) )
10195, 97, 100syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  ( (
( z  +Q  v
)  e.  ( 2nd `  A )  /\  s  e.  ( 2nd `  C
) )  ->  (
( z  +Q  v
)  +Q  s )  e.  ( 2nd `  ( A  +P.  C ) ) ) )
10280, 93, 101mp2and 433 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  ( (
z  +Q  v )  +Q  s )  e.  ( 2nd `  ( A  +P.  C ) ) )
10373, 102eqeltrrd 2283 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  ( (
z  +Q  s )  +Q  v )  e.  ( 2nd `  ( A  +P.  C ) ) )
10459, 103eqeltrrd 2283 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  t ) )  ->  w  e.  ( 2nd `  ( A  +P.  C ) ) )
10552, 104rexlimddv 2628 . . . . . . . 8  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  w  e.  ( 2nd `  ( A  +P.  C ) ) )
106105ex 115 . . . . . . 7  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 2nd `  B
) )  /\  (
t  e.  ( 2nd `  B )  /\  t  <Q  w ) )  /\  ( v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  ->  (
u  <Q  ( z  +Q  v )  ->  w  e.  ( 2nd `  ( A  +P.  C ) ) ) )
107106rexlimdvva 2631 . . . . . 6  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B
)  /\  t  <Q  w ) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  ->  ( E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A
) u  <Q  (
z  +Q  v )  ->  w  e.  ( 2nd `  ( A  +P.  C ) ) ) )
10824, 107mpd 13 . . . . 5  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B
)  /\  t  <Q  w ) )  /\  (
v  e.  Q.  /\  ( t  +Q  v
)  =  w ) )  ->  w  e.  ( 2nd `  ( A  +P.  C ) ) )
10917, 108rexlimddv 2628 . . . 4  |-  ( ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  /\  ( t  e.  ( 2nd `  B )  /\  t  <Q  w
) )  ->  w  e.  ( 2nd `  ( A  +P.  C ) ) )
1107, 109rexlimddv 2628 . . 3  |-  ( ( A  <P  B  /\  w  e.  ( 2nd `  B ) )  ->  w  e.  ( 2nd `  ( A  +P.  C
) ) )
111110ex 115 . 2  |-  ( A 
<P  B  ->  ( w  e.  ( 2nd `  B
)  ->  w  e.  ( 2nd `  ( A  +P.  C ) ) ) )
112111ssrdv 3199 1  |-  ( A 
<P  B  ->  ( 2nd `  B )  C_  ( 2nd `  ( A  +P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   {crab 2488    C_ wss 3166   <.cop 3636   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   1stc1st 6226   2ndc2nd 6227   Q.cnq 7395    +Q cplq 7397    <Q cltq 7400   P.cnp 7406    +P. cpp 7408    <P cltp 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-1o 6504  df-2o 6505  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-mpq 7460  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-mqqs 7465  df-1nqqs 7466  df-rq 7467  df-ltnqqs 7468  df-enq0 7539  df-nq0 7540  df-0nq0 7541  df-plq0 7542  df-mq0 7543  df-inp 7581  df-iplp 7583  df-iltp 7585
This theorem is referenced by:  ltexpri  7728
  Copyright terms: Public domain W3C validator