ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprlemrl Unicode version

Theorem addnqprlemrl 7732
Description: Lemma for addnqpr 7736. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqprlemrl  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 1st ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
Distinct variable groups:    A, l, u    B, l, u

Proof of Theorem addnqprlemrl
Dummy variables  f  g  h  r  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprlu 7722 . . . . . 6  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
2 nqprlu 7722 . . . . . 6  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
3 df-iplp 7643 . . . . . . 7  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
4 addclnq 7550 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
53, 4genpelvl 7687 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
61, 2, 5syl2an 289 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
76biimpa 296 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  ->  E. s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) )
8 vex 2802 . . . . . . . . . . . . 13  |-  s  e. 
_V
9 breq1 4085 . . . . . . . . . . . . 13  |-  ( l  =  s  ->  (
l  <Q  A  <->  s  <Q  A ) )
10 ltnqex 7724 . . . . . . . . . . . . . 14  |-  { l  |  l  <Q  A }  e.  _V
11 gtnqex 7725 . . . . . . . . . . . . . 14  |-  { u  |  A  <Q  u }  e.  _V
1210, 11op1st 6282 . . . . . . . . . . . . 13  |-  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { l  |  l 
<Q  A }
138, 9, 12elab2 2951 . . . . . . . . . . . 12  |-  ( s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  s  <Q  A )
1413biimpi 120 . . . . . . . . . . 11  |-  ( s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  s  <Q  A )
1514ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  s  <Q  A )
1615adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
s  <Q  A )
17 vex 2802 . . . . . . . . . . . . 13  |-  t  e. 
_V
18 breq1 4085 . . . . . . . . . . . . 13  |-  ( l  =  t  ->  (
l  <Q  B  <->  t  <Q  B ) )
19 ltnqex 7724 . . . . . . . . . . . . . 14  |-  { l  |  l  <Q  B }  e.  _V
20 gtnqex 7725 . . . . . . . . . . . . . 14  |-  { u  |  B  <Q  u }  e.  _V
2119, 20op1st 6282 . . . . . . . . . . . . 13  |-  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  =  { l  |  l 
<Q  B }
2217, 18, 21elab2 2951 . . . . . . . . . . . 12  |-  ( t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  <->  t  <Q  B )
2322biimpi 120 . . . . . . . . . . 11  |-  ( t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  ->  t  <Q  B )
2423ad2antll 491 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  t  <Q  B )
2524adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
t  <Q  B )
26 ltrelnq 7540 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
2726brel 4768 . . . . . . . . . . 11  |-  ( s 
<Q  A  ->  ( s  e.  Q.  /\  A  e.  Q. ) )
2816, 27syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  e.  Q.  /\  A  e.  Q. )
)
2926brel 4768 . . . . . . . . . . 11  |-  ( t 
<Q  B  ->  ( t  e.  Q.  /\  B  e.  Q. ) )
3025, 29syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( t  e.  Q.  /\  B  e.  Q. )
)
31 lt2addnq 7579 . . . . . . . . . 10  |-  ( ( ( s  e.  Q.  /\  A  e.  Q. )  /\  ( t  e.  Q.  /\  B  e.  Q. )
)  ->  ( (
s  <Q  A  /\  t  <Q  B )  ->  (
s  +Q  t ) 
<Q  ( A  +Q  B
) ) )
3228, 30, 31syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( ( s  <Q  A  /\  t  <Q  B )  ->  ( s  +Q  t )  <Q  ( A  +Q  B ) ) )
3316, 25, 32mp2and 433 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  +Q  t
)  <Q  ( A  +Q  B ) )
34 breq1 4085 . . . . . . . . 9  |-  ( r  =  ( s  +Q  t )  ->  (
r  <Q  ( A  +Q  B )  <->  ( s  +Q  t )  <Q  ( A  +Q  B ) ) )
3534adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( r  <Q  ( A  +Q  B )  <->  ( s  +Q  t )  <Q  ( A  +Q  B ) ) )
3633, 35mpbird 167 . . . . . . 7  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  <Q  ( A  +Q  B ) )
37 vex 2802 . . . . . . . 8  |-  r  e. 
_V
38 breq1 4085 . . . . . . . 8  |-  ( l  =  r  ->  (
l  <Q  ( A  +Q  B )  <->  r  <Q  ( A  +Q  B ) ) )
39 ltnqex 7724 . . . . . . . . 9  |-  { l  |  l  <Q  ( A  +Q  B ) }  e.  _V
40 gtnqex 7725 . . . . . . . . 9  |-  { u  |  ( A  +Q  B )  <Q  u }  e.  _V
4139, 40op1st 6282 . . . . . . . 8  |-  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. )  =  {
l  |  l  <Q 
( A  +Q  B
) }
4237, 38, 41elab2 2951 . . . . . . 7  |-  ( r  e.  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  <->  r  <Q  ( A  +Q  B ) )
4336, 42sylibr 134 . . . . . 6  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )
4443ex 115 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  (
r  =  ( s  +Q  t )  -> 
r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) ) )
4544rexlimdvva 2656 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  -> 
( E. s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) r  =  ( s  +Q  t )  ->  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) ) )
467, 45mpd 13 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  -> 
r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )
4746ex 115 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  ->  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) ) )
4847ssrdv 3230 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 1st ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509    C_ wss 3197   <.cop 3669   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   1stc1st 6274   Q.cnq 7455    +Q cplq 7457    <Q cltq 7460   P.cnp 7466    +P. cpp 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-inp 7641  df-iplp 7643
This theorem is referenced by:  addnqprlemfu  7735  addnqpr  7736
  Copyright terms: Public domain W3C validator