ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmplp Unicode version

Theorem dmplp 7046
Description: Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
dmplp  |-  dom  +P.  =  ( P.  X.  P. )

Proof of Theorem dmplp
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iplp 6974 . 2  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { v  e.  Q.  |  E. w  e.  Q.  E. z  e.  Q.  (
w  e.  ( 1st `  x )  /\  z  e.  ( 1st `  y
)  /\  v  =  ( w  +Q  z
) ) } ,  { v  e.  Q.  |  E. w  e.  Q.  E. z  e.  Q.  (
w  e.  ( 2nd `  x )  /\  z  e.  ( 2nd `  y
)  /\  v  =  ( w  +Q  z
) ) } >. )
2 addclnq 6881 . 2  |-  ( ( w  e.  Q.  /\  z  e.  Q. )  ->  ( w  +Q  z
)  e.  Q. )
31, 2genipdm 7022 1  |-  dom  +P.  =  ( P.  X.  P. )
Colors of variables: wff set class
Syntax hints:    = wceq 1287    X. cxp 4411   dom cdm 4413    +Q cplq 6788   P.cnp 6797    +P. cpp 6799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-iord 4169  df-on 4171  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-irdg 6091  df-oadd 6141  df-omul 6142  df-er 6246  df-ec 6248  df-qs 6252  df-ni 6810  df-pli 6811  df-mi 6812  df-plpq 6850  df-enq 6853  df-nqqs 6854  df-plqqs 6855  df-iplp 6974
This theorem is referenced by:  addassprg  7085
  Copyright terms: Public domain W3C validator