ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprlemru Unicode version

Theorem addnqprlemru 7653
Description: Lemma for addnqpr 7656. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqprlemru  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
Distinct variable groups:    A, l, u    B, l, u

Proof of Theorem addnqprlemru
Dummy variables  f  g  h  r  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprlu 7642 . . . . . 6  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
2 nqprlu 7642 . . . . . 6  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
3 df-iplp 7563 . . . . . . 7  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
4 addclnq 7470 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
53, 4genpelvu 7608 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
61, 2, 5syl2an 289 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
76biimpa 296 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  ->  E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) )
8 vex 2774 . . . . . . . . . . . . 13  |-  s  e. 
_V
9 breq2 4047 . . . . . . . . . . . . 13  |-  ( u  =  s  ->  ( A  <Q  u  <->  A  <Q  s ) )
10 ltnqex 7644 . . . . . . . . . . . . . 14  |-  { l  |  l  <Q  A }  e.  _V
11 gtnqex 7645 . . . . . . . . . . . . . 14  |-  { u  |  A  <Q  u }  e.  _V
1210, 11op2nd 6223 . . . . . . . . . . . . 13  |-  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { u  |  A  <Q  u }
138, 9, 12elab2 2920 . . . . . . . . . . . 12  |-  ( s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  A  <Q  s )
1413biimpi 120 . . . . . . . . . . 11  |-  ( s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  A  <Q  s )
1514ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  A  <Q  s )
1615adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  A  <Q  s )
17 vex 2774 . . . . . . . . . . . . 13  |-  t  e. 
_V
18 breq2 4047 . . . . . . . . . . . . 13  |-  ( u  =  t  ->  ( B  <Q  u  <->  B  <Q  t ) )
19 ltnqex 7644 . . . . . . . . . . . . . 14  |-  { l  |  l  <Q  B }  e.  _V
20 gtnqex 7645 . . . . . . . . . . . . . 14  |-  { u  |  B  <Q  u }  e.  _V
2119, 20op2nd 6223 . . . . . . . . . . . . 13  |-  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  =  { u  |  B  <Q  u }
2217, 18, 21elab2 2920 . . . . . . . . . . . 12  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  <->  B  <Q  t )
2322biimpi 120 . . . . . . . . . . 11  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  ->  B  <Q  t )
2423ad2antll 491 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  B  <Q  t )
2524adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  B  <Q  t )
26 ltrelnq 7460 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
2726brel 4725 . . . . . . . . . . 11  |-  ( A 
<Q  s  ->  ( A  e.  Q.  /\  s  e.  Q. ) )
2816, 27syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( A  e.  Q.  /\  s  e.  Q. )
)
2926brel 4725 . . . . . . . . . . 11  |-  ( B 
<Q  t  ->  ( B  e.  Q.  /\  t  e.  Q. ) )
3025, 29syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( B  e.  Q.  /\  t  e.  Q. )
)
31 lt2addnq 7499 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  s  e.  Q. )  /\  ( B  e.  Q.  /\  t  e.  Q. )
)  ->  ( ( A  <Q  s  /\  B  <Q  t )  ->  ( A  +Q  B )  <Q 
( s  +Q  t
) ) )
3228, 30, 31syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( ( A  <Q  s  /\  B  <Q  t
)  ->  ( A  +Q  B )  <Q  (
s  +Q  t ) ) )
3316, 25, 32mp2and 433 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( A  +Q  B
)  <Q  ( s  +Q  t ) )
34 breq2 4047 . . . . . . . . 9  |-  ( r  =  ( s  +Q  t )  ->  (
( A  +Q  B
)  <Q  r  <->  ( A  +Q  B )  <Q  (
s  +Q  t ) ) )
3534adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( ( A  +Q  B )  <Q  r  <->  ( A  +Q  B ) 
<Q  ( s  +Q  t
) ) )
3633, 35mpbird 167 . . . . . . 7  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( A  +Q  B
)  <Q  r )
37 vex 2774 . . . . . . . 8  |-  r  e. 
_V
38 breq2 4047 . . . . . . . 8  |-  ( u  =  r  ->  (
( A  +Q  B
)  <Q  u  <->  ( A  +Q  B )  <Q  r
) )
39 ltnqex 7644 . . . . . . . . 9  |-  { l  |  l  <Q  ( A  +Q  B ) }  e.  _V
40 gtnqex 7645 . . . . . . . . 9  |-  { u  |  ( A  +Q  B )  <Q  u }  e.  _V
4139, 40op2nd 6223 . . . . . . . 8  |-  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. )  =  {
u  |  ( A  +Q  B )  <Q  u }
4237, 38, 41elab2 2920 . . . . . . 7  |-  ( r  e.  ( 2nd `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  <->  ( A  +Q  B )  <Q  r
)
4336, 42sylibr 134 . . . . . 6  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )
4443ex 115 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  (
r  =  ( s  +Q  t )  -> 
r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) ) )
4544rexlimdvva 2630 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  -> 
( E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) r  =  ( s  +Q  t )  ->  r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) ) )
467, 45mpd 13 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  -> 
r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )
4746ex 115 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  ->  r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) ) )
4847ssrdv 3198 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   {cab 2190   E.wrex 2484    C_ wss 3165   <.cop 3635   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   2ndc2nd 6215   Q.cnq 7375    +Q cplq 7377    <Q cltq 7380   P.cnp 7386    +P. cpp 7388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-inp 7561  df-iplp 7563
This theorem is referenced by:  addnqprlemfl  7654  addnqpr  7656
  Copyright terms: Public domain W3C validator