Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mhmf1o | Unicode version |
Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.) |
Ref | Expression |
---|---|
mhmf1o.b | |
mhmf1o.c |
Ref | Expression |
---|---|
mhmf1o | MndHom MndHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmrcl2 12687 | . . . . 5 MndHom | |
2 | mhmrcl1 12686 | . . . . 5 MndHom | |
3 | 1, 2 | jca 304 | . . . 4 MndHom |
4 | 3 | adantr 274 | . . 3 MndHom |
5 | f1ocnv 5455 | . . . . . 6 | |
6 | 5 | adantl 275 | . . . . 5 MndHom |
7 | f1of 5442 | . . . . 5 | |
8 | 6, 7 | syl 14 | . . . 4 MndHom |
9 | simpll 524 | . . . . . . . 8 MndHom MndHom | |
10 | 8 | adantr 274 | . . . . . . . . 9 MndHom |
11 | simprl 526 | . . . . . . . . 9 MndHom | |
12 | 10, 11 | ffvelrnd 5632 | . . . . . . . 8 MndHom |
13 | simprr 527 | . . . . . . . . 9 MndHom | |
14 | 10, 13 | ffvelrnd 5632 | . . . . . . . 8 MndHom |
15 | mhmf1o.b | . . . . . . . . 9 | |
16 | eqid 2170 | . . . . . . . . 9 | |
17 | eqid 2170 | . . . . . . . . 9 | |
18 | 15, 16, 17 | mhmlin 12690 | . . . . . . . 8 MndHom |
19 | 9, 12, 14, 18 | syl3anc 1233 | . . . . . . 7 MndHom |
20 | simpr 109 | . . . . . . . . . 10 MndHom | |
21 | 20 | adantr 274 | . . . . . . . . 9 MndHom |
22 | f1ocnvfv2 5757 | . . . . . . . . 9 | |
23 | 21, 11, 22 | syl2anc 409 | . . . . . . . 8 MndHom |
24 | f1ocnvfv2 5757 | . . . . . . . . 9 | |
25 | 21, 13, 24 | syl2anc 409 | . . . . . . . 8 MndHom |
26 | 23, 25 | oveq12d 5871 | . . . . . . 7 MndHom |
27 | 19, 26 | eqtrd 2203 | . . . . . 6 MndHom |
28 | 2 | adantr 274 | . . . . . . . . 9 MndHom |
29 | 28 | adantr 274 | . . . . . . . 8 MndHom |
30 | 15, 16 | mndcl 12659 | . . . . . . . 8 |
31 | 29, 12, 14, 30 | syl3anc 1233 | . . . . . . 7 MndHom |
32 | f1ocnvfv 5758 | . . . . . . 7 | |
33 | 21, 31, 32 | syl2anc 409 | . . . . . 6 MndHom |
34 | 27, 33 | mpd 13 | . . . . 5 MndHom |
35 | 34 | ralrimivva 2552 | . . . 4 MndHom |
36 | eqid 2170 | . . . . . . . . 9 | |
37 | eqid 2170 | . . . . . . . . 9 | |
38 | 36, 37 | mhm0 12691 | . . . . . . . 8 MndHom |
39 | 38 | adantr 274 | . . . . . . 7 MndHom |
40 | 39 | eqcomd 2176 | . . . . . 6 MndHom |
41 | 40 | fveq2d 5500 | . . . . 5 MndHom |
42 | 15, 36 | mndidcl 12666 | . . . . . . . 8 |
43 | 2, 42 | syl 14 | . . . . . . 7 MndHom |
44 | 43 | adantr 274 | . . . . . 6 MndHom |
45 | f1ocnvfv1 5756 | . . . . . 6 | |
46 | 20, 44, 45 | syl2anc 409 | . . . . 5 MndHom |
47 | 41, 46 | eqtrd 2203 | . . . 4 MndHom |
48 | 8, 35, 47 | 3jca 1172 | . . 3 MndHom |
49 | mhmf1o.c | . . . 4 | |
50 | 49, 15, 17, 16, 37, 36 | ismhm 12685 | . . 3 MndHom |
51 | 4, 48, 50 | sylanbrc 415 | . 2 MndHom MndHom |
52 | 15, 49 | mhmf 12688 | . . . . 5 MndHom |
53 | 52 | adantr 274 | . . . 4 MndHom MndHom |
54 | 53 | ffnd 5348 | . . 3 MndHom MndHom |
55 | 49, 15 | mhmf 12688 | . . . . 5 MndHom |
56 | 55 | adantl 275 | . . . 4 MndHom MndHom |
57 | 56 | ffnd 5348 | . . 3 MndHom MndHom |
58 | dff1o4 5450 | . . 3 | |
59 | 54, 57, 58 | sylanbrc 415 | . 2 MndHom MndHom |
60 | 51, 59 | impbida 591 | 1 MndHom MndHom |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 ccnv 4610 wfn 5193 wf 5194 wf1o 5197 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 cmnd 12652 MndHom cmhm 12681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 df-mhm 12683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |