ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmf1o Unicode version

Theorem mhmf1o 12693
Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
mhmf1o.b  |-  B  =  ( Base `  R
)
mhmf1o.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
mhmf1o  |-  ( F  e.  ( R MndHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S MndHom  R ) ) )

Proof of Theorem mhmf1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 12687 . . . . 5  |-  ( F  e.  ( R MndHom  S
)  ->  S  e.  Mnd )
2 mhmrcl1 12686 . . . . 5  |-  ( F  e.  ( R MndHom  S
)  ->  R  e.  Mnd )
31, 2jca 304 . . . 4  |-  ( F  e.  ( R MndHom  S
)  ->  ( S  e.  Mnd  /\  R  e. 
Mnd ) )
43adantr 274 . . 3  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  ( S  e.  Mnd  /\  R  e.  Mnd ) )
5 f1ocnv 5455 . . . . . 6  |-  ( F : B -1-1-onto-> C  ->  `' F : C -1-1-onto-> B )
65adantl 275 . . . . 5  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F : C -1-1-onto-> B )
7 f1of 5442 . . . . 5  |-  ( `' F : C -1-1-onto-> B  ->  `' F : C --> B )
86, 7syl 14 . . . 4  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F : C --> B )
9 simpll 524 . . . . . . . 8  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  F  e.  ( R MndHom  S ) )
108adantr 274 . . . . . . . . 9  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  `' F : C --> B )
11 simprl 526 . . . . . . . . 9  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  x  e.  C )
1210, 11ffvelrnd 5632 . . . . . . . 8  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( `' F `  x )  e.  B )
13 simprr 527 . . . . . . . . 9  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  y  e.  C )
1410, 13ffvelrnd 5632 . . . . . . . 8  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( `' F `  y )  e.  B )
15 mhmf1o.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
16 eqid 2170 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
17 eqid 2170 . . . . . . . . 9  |-  ( +g  `  S )  =  ( +g  `  S )
1815, 16, 17mhmlin 12690 . . . . . . . 8  |-  ( ( F  e.  ( R MndHom  S )  /\  ( `' F `  x )  e.  B  /\  ( `' F `  y )  e.  B )  -> 
( F `  (
( `' F `  x ) ( +g  `  R ) ( `' F `  y ) ) )  =  ( ( F `  ( `' F `  x ) ) ( +g  `  S
) ( F `  ( `' F `  y ) ) ) )
199, 12, 14, 18syl3anc 1233 . . . . . . 7  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( F `  ( ( `' F `  x ) ( +g  `  R ) ( `' F `  y ) ) )  =  ( ( F `  ( `' F `  x ) ) ( +g  `  S
) ( F `  ( `' F `  y ) ) ) )
20 simpr 109 . . . . . . . . . 10  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  F : B -1-1-onto-> C )
2120adantr 274 . . . . . . . . 9  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  F : B
-1-1-onto-> C )
22 f1ocnvfv2 5757 . . . . . . . . 9  |-  ( ( F : B -1-1-onto-> C  /\  x  e.  C )  ->  ( F `  ( `' F `  x ) )  =  x )
2321, 11, 22syl2anc 409 . . . . . . . 8  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( F `  ( `' F `  x ) )  =  x )
24 f1ocnvfv2 5757 . . . . . . . . 9  |-  ( ( F : B -1-1-onto-> C  /\  y  e.  C )  ->  ( F `  ( `' F `  y ) )  =  y )
2521, 13, 24syl2anc 409 . . . . . . . 8  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( F `  ( `' F `  y ) )  =  y )
2623, 25oveq12d 5871 . . . . . . 7  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( ( F `  ( `' F `  x )
) ( +g  `  S
) ( F `  ( `' F `  y ) ) )  =  ( x ( +g  `  S
) y ) )
2719, 26eqtrd 2203 . . . . . 6  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( F `  ( ( `' F `  x ) ( +g  `  R ) ( `' F `  y ) ) )  =  ( x ( +g  `  S
) y ) )
282adantr 274 . . . . . . . . 9  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  R  e.  Mnd )
2928adantr 274 . . . . . . . 8  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  R  e.  Mnd )
3015, 16mndcl 12659 . . . . . . . 8  |-  ( ( R  e.  Mnd  /\  ( `' F `  x )  e.  B  /\  ( `' F `  y )  e.  B )  -> 
( ( `' F `  x ) ( +g  `  R ) ( `' F `  y ) )  e.  B )
3129, 12, 14, 30syl3anc 1233 . . . . . . 7  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( ( `' F `  x ) ( +g  `  R
) ( `' F `  y ) )  e.  B )
32 f1ocnvfv 5758 . . . . . . 7  |-  ( ( F : B -1-1-onto-> C  /\  ( ( `' F `  x ) ( +g  `  R ) ( `' F `  y ) )  e.  B )  ->  ( ( F `
 ( ( `' F `  x ) ( +g  `  R
) ( `' F `  y ) ) )  =  ( x ( +g  `  S ) y )  ->  ( `' F `  ( x ( +g  `  S
) y ) )  =  ( ( `' F `  x ) ( +g  `  R
) ( `' F `  y ) ) ) )
3321, 31, 32syl2anc 409 . . . . . 6  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( ( F `  ( ( `' F `  x ) ( +g  `  R
) ( `' F `  y ) ) )  =  ( x ( +g  `  S ) y )  ->  ( `' F `  ( x ( +g  `  S
) y ) )  =  ( ( `' F `  x ) ( +g  `  R
) ( `' F `  y ) ) ) )
3427, 33mpd 13 . . . . 5  |-  ( ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( `' F `  ( x
( +g  `  S ) y ) )  =  ( ( `' F `  x ) ( +g  `  R ) ( `' F `  y ) ) )
3534ralrimivva 2552 . . . 4  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  A. x  e.  C  A. y  e.  C  ( `' F `  ( x
( +g  `  S ) y ) )  =  ( ( `' F `  x ) ( +g  `  R ) ( `' F `  y ) ) )
36 eqid 2170 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
37 eqid 2170 . . . . . . . . 9  |-  ( 0g
`  S )  =  ( 0g `  S
)
3836, 37mhm0 12691 . . . . . . . 8  |-  ( F  e.  ( R MndHom  S
)  ->  ( F `  ( 0g `  R
) )  =  ( 0g `  S ) )
3938adantr 274 . . . . . . 7  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  ( F `  ( 0g `  R ) )  =  ( 0g `  S
) )
4039eqcomd 2176 . . . . . 6  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  ( 0g `  S )  =  ( F `  ( 0g `  R ) ) )
4140fveq2d 5500 . . . . 5  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F `  ( 0g
`  S ) )  =  ( `' F `  ( F `  ( 0g `  R ) ) ) )
4215, 36mndidcl 12666 . . . . . . . 8  |-  ( R  e.  Mnd  ->  ( 0g `  R )  e.  B )
432, 42syl 14 . . . . . . 7  |-  ( F  e.  ( R MndHom  S
)  ->  ( 0g `  R )  e.  B
)
4443adantr 274 . . . . . 6  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  ( 0g `  R )  e.  B )
45 f1ocnvfv1 5756 . . . . . 6  |-  ( ( F : B -1-1-onto-> C  /\  ( 0g `  R )  e.  B )  -> 
( `' F `  ( F `  ( 0g
`  R ) ) )  =  ( 0g
`  R ) )
4620, 44, 45syl2anc 409 . . . . 5  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F `  ( F `
 ( 0g `  R ) ) )  =  ( 0g `  R ) )
4741, 46eqtrd 2203 . . . 4  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F `  ( 0g
`  S ) )  =  ( 0g `  R ) )
488, 35, 473jca 1172 . . 3  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  ( `' F : C --> B  /\  A. x  e.  C  A. y  e.  C  ( `' F `  ( x ( +g  `  S
) y ) )  =  ( ( `' F `  x ) ( +g  `  R
) ( `' F `  y ) )  /\  ( `' F `  ( 0g
`  S ) )  =  ( 0g `  R ) ) )
49 mhmf1o.c . . . 4  |-  C  =  ( Base `  S
)
5049, 15, 17, 16, 37, 36ismhm 12685 . . 3  |-  ( `' F  e.  ( S MndHom  R )  <->  ( ( S  e.  Mnd  /\  R  e.  Mnd )  /\  ( `' F : C --> B  /\  A. x  e.  C  A. y  e.  C  ( `' F `  ( x ( +g  `  S
) y ) )  =  ( ( `' F `  x ) ( +g  `  R
) ( `' F `  y ) )  /\  ( `' F `  ( 0g
`  S ) )  =  ( 0g `  R ) ) ) )
514, 48, 50sylanbrc 415 . 2  |-  ( ( F  e.  ( R MndHom  S )  /\  F : B -1-1-onto-> C )  ->  `' F  e.  ( S MndHom  R ) )
5215, 49mhmf 12688 . . . . 5  |-  ( F  e.  ( R MndHom  S
)  ->  F : B
--> C )
5352adantr 274 . . . 4  |-  ( ( F  e.  ( R MndHom  S )  /\  `' F  e.  ( S MndHom  R ) )  ->  F : B --> C )
5453ffnd 5348 . . 3  |-  ( ( F  e.  ( R MndHom  S )  /\  `' F  e.  ( S MndHom  R ) )  ->  F  Fn  B )
5549, 15mhmf 12688 . . . . 5  |-  ( `' F  e.  ( S MndHom  R )  ->  `' F : C --> B )
5655adantl 275 . . . 4  |-  ( ( F  e.  ( R MndHom  S )  /\  `' F  e.  ( S MndHom  R ) )  ->  `' F : C --> B )
5756ffnd 5348 . . 3  |-  ( ( F  e.  ( R MndHom  S )  /\  `' F  e.  ( S MndHom  R ) )  ->  `' F  Fn  C )
58 dff1o4 5450 . . 3  |-  ( F : B -1-1-onto-> C  <->  ( F  Fn  B  /\  `' F  Fn  C ) )
5954, 57, 58sylanbrc 415 . 2  |-  ( ( F  e.  ( R MndHom  S )  /\  `' F  e.  ( S MndHom  R ) )  ->  F : B -1-1-onto-> C )
6051, 59impbida 591 1  |-  ( F  e.  ( R MndHom  S
)  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S MndHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   `'ccnv 4610    Fn wfn 5193   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   0gc0g 12596   Mndcmnd 12652   MndHom cmhm 12681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-0g 12598  df-mgm 12610  df-sgrp 12643  df-mnd 12653  df-mhm 12683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator