| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmf1o | Unicode version | ||
| Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.) |
| Ref | Expression |
|---|---|
| mhmf1o.b |
|
| mhmf1o.c |
|
| Ref | Expression |
|---|---|
| mhmf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmrcl2 13166 |
. . . . 5
| |
| 2 | mhmrcl1 13165 |
. . . . 5
| |
| 3 | 1, 2 | jca 306 |
. . . 4
|
| 4 | 3 | adantr 276 |
. . 3
|
| 5 | f1ocnv 5520 |
. . . . . 6
| |
| 6 | 5 | adantl 277 |
. . . . 5
|
| 7 | f1of 5507 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | simpll 527 |
. . . . . . . 8
| |
| 10 | 8 | adantr 276 |
. . . . . . . . 9
|
| 11 | simprl 529 |
. . . . . . . . 9
| |
| 12 | 10, 11 | ffvelcdmd 5701 |
. . . . . . . 8
|
| 13 | simprr 531 |
. . . . . . . . 9
| |
| 14 | 10, 13 | ffvelcdmd 5701 |
. . . . . . . 8
|
| 15 | mhmf1o.b |
. . . . . . . . 9
| |
| 16 | eqid 2196 |
. . . . . . . . 9
| |
| 17 | eqid 2196 |
. . . . . . . . 9
| |
| 18 | 15, 16, 17 | mhmlin 13169 |
. . . . . . . 8
|
| 19 | 9, 12, 14, 18 | syl3anc 1249 |
. . . . . . 7
|
| 20 | simpr 110 |
. . . . . . . . . 10
| |
| 21 | 20 | adantr 276 |
. . . . . . . . 9
|
| 22 | f1ocnvfv2 5828 |
. . . . . . . . 9
| |
| 23 | 21, 11, 22 | syl2anc 411 |
. . . . . . . 8
|
| 24 | f1ocnvfv2 5828 |
. . . . . . . . 9
| |
| 25 | 21, 13, 24 | syl2anc 411 |
. . . . . . . 8
|
| 26 | 23, 25 | oveq12d 5943 |
. . . . . . 7
|
| 27 | 19, 26 | eqtrd 2229 |
. . . . . 6
|
| 28 | 2 | adantr 276 |
. . . . . . . . 9
|
| 29 | 28 | adantr 276 |
. . . . . . . 8
|
| 30 | 15, 16 | mndcl 13125 |
. . . . . . . 8
|
| 31 | 29, 12, 14, 30 | syl3anc 1249 |
. . . . . . 7
|
| 32 | f1ocnvfv 5829 |
. . . . . . 7
| |
| 33 | 21, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 27, 33 | mpd 13 |
. . . . 5
|
| 35 | 34 | ralrimivva 2579 |
. . . 4
|
| 36 | eqid 2196 |
. . . . . . . . 9
| |
| 37 | eqid 2196 |
. . . . . . . . 9
| |
| 38 | 36, 37 | mhm0 13170 |
. . . . . . . 8
|
| 39 | 38 | adantr 276 |
. . . . . . 7
|
| 40 | 39 | eqcomd 2202 |
. . . . . 6
|
| 41 | 40 | fveq2d 5565 |
. . . . 5
|
| 42 | 15, 36 | mndidcl 13132 |
. . . . . . . 8
|
| 43 | 2, 42 | syl 14 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | f1ocnvfv1 5827 |
. . . . . 6
| |
| 46 | 20, 44, 45 | syl2anc 411 |
. . . . 5
|
| 47 | 41, 46 | eqtrd 2229 |
. . . 4
|
| 48 | 8, 35, 47 | 3jca 1179 |
. . 3
|
| 49 | mhmf1o.c |
. . . 4
| |
| 50 | 49, 15, 17, 16, 37, 36 | ismhm 13163 |
. . 3
|
| 51 | 4, 48, 50 | sylanbrc 417 |
. 2
|
| 52 | 15, 49 | mhmf 13167 |
. . . . 5
|
| 53 | 52 | adantr 276 |
. . . 4
|
| 54 | 53 | ffnd 5411 |
. . 3
|
| 55 | 49, 15 | mhmf 13167 |
. . . . 5
|
| 56 | 55 | adantl 277 |
. . . 4
|
| 57 | 56 | ffnd 5411 |
. . 3
|
| 58 | dff1o4 5515 |
. . 3
| |
| 59 | 54, 57, 58 | sylanbrc 417 |
. 2
|
| 60 | 51, 59 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-mhm 13161 |
| This theorem is referenced by: rhmf1o 13800 |
| Copyright terms: Public domain | W3C validator |