| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmf1o | Unicode version | ||
| Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.) |
| Ref | Expression |
|---|---|
| mhmf1o.b |
|
| mhmf1o.c |
|
| Ref | Expression |
|---|---|
| mhmf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmrcl2 13411 |
. . . . 5
| |
| 2 | mhmrcl1 13410 |
. . . . 5
| |
| 3 | 1, 2 | jca 306 |
. . . 4
|
| 4 | 3 | adantr 276 |
. . 3
|
| 5 | f1ocnv 5557 |
. . . . . 6
| |
| 6 | 5 | adantl 277 |
. . . . 5
|
| 7 | f1of 5544 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | simpll 527 |
. . . . . . . 8
| |
| 10 | 8 | adantr 276 |
. . . . . . . . 9
|
| 11 | simprl 529 |
. . . . . . . . 9
| |
| 12 | 10, 11 | ffvelcdmd 5739 |
. . . . . . . 8
|
| 13 | simprr 531 |
. . . . . . . . 9
| |
| 14 | 10, 13 | ffvelcdmd 5739 |
. . . . . . . 8
|
| 15 | mhmf1o.b |
. . . . . . . . 9
| |
| 16 | eqid 2207 |
. . . . . . . . 9
| |
| 17 | eqid 2207 |
. . . . . . . . 9
| |
| 18 | 15, 16, 17 | mhmlin 13414 |
. . . . . . . 8
|
| 19 | 9, 12, 14, 18 | syl3anc 1250 |
. . . . . . 7
|
| 20 | simpr 110 |
. . . . . . . . . 10
| |
| 21 | 20 | adantr 276 |
. . . . . . . . 9
|
| 22 | f1ocnvfv2 5870 |
. . . . . . . . 9
| |
| 23 | 21, 11, 22 | syl2anc 411 |
. . . . . . . 8
|
| 24 | f1ocnvfv2 5870 |
. . . . . . . . 9
| |
| 25 | 21, 13, 24 | syl2anc 411 |
. . . . . . . 8
|
| 26 | 23, 25 | oveq12d 5985 |
. . . . . . 7
|
| 27 | 19, 26 | eqtrd 2240 |
. . . . . 6
|
| 28 | 2 | adantr 276 |
. . . . . . . . 9
|
| 29 | 28 | adantr 276 |
. . . . . . . 8
|
| 30 | 15, 16 | mndcl 13370 |
. . . . . . . 8
|
| 31 | 29, 12, 14, 30 | syl3anc 1250 |
. . . . . . 7
|
| 32 | f1ocnvfv 5871 |
. . . . . . 7
| |
| 33 | 21, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 27, 33 | mpd 13 |
. . . . 5
|
| 35 | 34 | ralrimivva 2590 |
. . . 4
|
| 36 | eqid 2207 |
. . . . . . . . 9
| |
| 37 | eqid 2207 |
. . . . . . . . 9
| |
| 38 | 36, 37 | mhm0 13415 |
. . . . . . . 8
|
| 39 | 38 | adantr 276 |
. . . . . . 7
|
| 40 | 39 | eqcomd 2213 |
. . . . . 6
|
| 41 | 40 | fveq2d 5603 |
. . . . 5
|
| 42 | 15, 36 | mndidcl 13377 |
. . . . . . . 8
|
| 43 | 2, 42 | syl 14 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | f1ocnvfv1 5869 |
. . . . . 6
| |
| 46 | 20, 44, 45 | syl2anc 411 |
. . . . 5
|
| 47 | 41, 46 | eqtrd 2240 |
. . . 4
|
| 48 | 8, 35, 47 | 3jca 1180 |
. . 3
|
| 49 | mhmf1o.c |
. . . 4
| |
| 50 | 49, 15, 17, 16, 37, 36 | ismhm 13408 |
. . 3
|
| 51 | 4, 48, 50 | sylanbrc 417 |
. 2
|
| 52 | 15, 49 | mhmf 13412 |
. . . . 5
|
| 53 | 52 | adantr 276 |
. . . 4
|
| 54 | 53 | ffnd 5446 |
. . 3
|
| 55 | 49, 15 | mhmf 13412 |
. . . . 5
|
| 56 | 55 | adantl 277 |
. . . 4
|
| 57 | 56 | ffnd 5446 |
. . 3
|
| 58 | dff1o4 5552 |
. . 3
| |
| 59 | 54, 57, 58 | sylanbrc 417 |
. 2
|
| 60 | 51, 59 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-mhm 13406 |
| This theorem is referenced by: rhmf1o 14045 |
| Copyright terms: Public domain | W3C validator |