ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o2 Unicode version

Theorem mapsnf1o2 6841
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsncnv.f  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
Assertion
Ref Expression
mapsnf1o2  |-  F :
( B  ^m  S
)
-1-1-onto-> B
Distinct variable groups:    x, B    x, S
Allowed substitution hints:    F( x)    X( x)

Proof of Theorem mapsnf1o2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . 4  |-  x  e. 
_V
2 mapsncnv.x . . . 4  |-  X  e. 
_V
31, 2fvex 5646 . . 3  |-  ( x `
 X )  e. 
_V
4 mapsncnv.f . . 3  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
53, 4fnmpti 5451 . 2  |-  F  Fn  ( B  ^m  S )
6 mapsncnv.s . . . . 5  |-  S  =  { X }
72snex 4268 . . . . 5  |-  { X }  e.  _V
86, 7eqeltri 2302 . . . 4  |-  S  e. 
_V
9 vex 2802 . . . . 5  |-  y  e. 
_V
109snex 4268 . . . 4  |-  { y }  e.  _V
118, 10xpex 4833 . . 3  |-  ( S  X.  { y } )  e.  _V
12 mapsncnv.b . . . 4  |-  B  e. 
_V
136, 12, 2, 4mapsncnv 6840 . . 3  |-  `' F  =  ( y  e.  B  |->  ( S  X.  { y } ) )
1411, 13fnmpti 5451 . 2  |-  `' F  Fn  B
15 dff1o4 5579 . 2  |-  ( F : ( B  ^m  S ) -1-1-onto-> B  <->  ( F  Fn  ( B  ^m  S )  /\  `' F  Fn  B ) )
165, 14, 15mpbir2an 948 1  |-  F :
( B  ^m  S
)
-1-1-onto-> B
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666    |-> cmpt 4144    X. cxp 4716   `'ccnv 4717    Fn wfn 5312   -1-1-onto->wf1o 5316   ` cfv 5317  (class class class)co 6000    ^m cmap 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-map 6795
This theorem is referenced by:  mapsnf1o3  6842
  Copyright terms: Public domain W3C validator