ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o2 Unicode version

Theorem mapsnf1o2 6556
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsncnv.f  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
Assertion
Ref Expression
mapsnf1o2  |-  F :
( B  ^m  S
)
-1-1-onto-> B
Distinct variable groups:    x, B    x, S
Allowed substitution hints:    F( x)    X( x)

Proof of Theorem mapsnf1o2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2661 . . . 4  |-  x  e. 
_V
2 mapsncnv.x . . . 4  |-  X  e. 
_V
31, 2fvex 5407 . . 3  |-  ( x `
 X )  e. 
_V
4 mapsncnv.f . . 3  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
53, 4fnmpti 5219 . 2  |-  F  Fn  ( B  ^m  S )
6 mapsncnv.s . . . . 5  |-  S  =  { X }
72snex 4077 . . . . 5  |-  { X }  e.  _V
86, 7eqeltri 2188 . . . 4  |-  S  e. 
_V
9 vex 2661 . . . . 5  |-  y  e. 
_V
109snex 4077 . . . 4  |-  { y }  e.  _V
118, 10xpex 4622 . . 3  |-  ( S  X.  { y } )  e.  _V
12 mapsncnv.b . . . 4  |-  B  e. 
_V
136, 12, 2, 4mapsncnv 6555 . . 3  |-  `' F  =  ( y  e.  B  |->  ( S  X.  { y } ) )
1411, 13fnmpti 5219 . 2  |-  `' F  Fn  B
15 dff1o4 5341 . 2  |-  ( F : ( B  ^m  S ) -1-1-onto-> B  <->  ( F  Fn  ( B  ^m  S )  /\  `' F  Fn  B ) )
165, 14, 15mpbir2an 909 1  |-  F :
( B  ^m  S
)
-1-1-onto-> B
Colors of variables: wff set class
Syntax hints:    = wceq 1314    e. wcel 1463   _Vcvv 2658   {csn 3495    |-> cmpt 3957    X. cxp 4505   `'ccnv 4506    Fn wfn 5086   -1-1-onto->wf1o 5090   ` cfv 5091  (class class class)co 5740    ^m cmap 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-map 6510
This theorem is referenced by:  mapsnf1o3  6557
  Copyright terms: Public domain W3C validator