ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o2 Unicode version

Theorem mapsnf1o2 6764
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsncnv.f  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
Assertion
Ref Expression
mapsnf1o2  |-  F :
( B  ^m  S
)
-1-1-onto-> B
Distinct variable groups:    x, B    x, S
Allowed substitution hints:    F( x)    X( x)

Proof of Theorem mapsnf1o2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . 4  |-  x  e. 
_V
2 mapsncnv.x . . . 4  |-  X  e. 
_V
31, 2fvex 5581 . . 3  |-  ( x `
 X )  e. 
_V
4 mapsncnv.f . . 3  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
53, 4fnmpti 5389 . 2  |-  F  Fn  ( B  ^m  S )
6 mapsncnv.s . . . . 5  |-  S  =  { X }
72snex 4219 . . . . 5  |-  { X }  e.  _V
86, 7eqeltri 2269 . . . 4  |-  S  e. 
_V
9 vex 2766 . . . . 5  |-  y  e. 
_V
109snex 4219 . . . 4  |-  { y }  e.  _V
118, 10xpex 4779 . . 3  |-  ( S  X.  { y } )  e.  _V
12 mapsncnv.b . . . 4  |-  B  e. 
_V
136, 12, 2, 4mapsncnv 6763 . . 3  |-  `' F  =  ( y  e.  B  |->  ( S  X.  { y } ) )
1411, 13fnmpti 5389 . 2  |-  `' F  Fn  B
15 dff1o4 5515 . 2  |-  ( F : ( B  ^m  S ) -1-1-onto-> B  <->  ( F  Fn  ( B  ^m  S )  /\  `' F  Fn  B ) )
165, 14, 15mpbir2an 944 1  |-  F :
( B  ^m  S
)
-1-1-onto-> B
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3623    |-> cmpt 4095    X. cxp 4662   `'ccnv 4663    Fn wfn 5254   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    ^m cmap 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718
This theorem is referenced by:  mapsnf1o3  6765
  Copyright terms: Public domain W3C validator