ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o2 Unicode version

Theorem mapsnf1o2 6750
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsncnv.f  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
Assertion
Ref Expression
mapsnf1o2  |-  F :
( B  ^m  S
)
-1-1-onto-> B
Distinct variable groups:    x, B    x, S
Allowed substitution hints:    F( x)    X( x)

Proof of Theorem mapsnf1o2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . 4  |-  x  e. 
_V
2 mapsncnv.x . . . 4  |-  X  e. 
_V
31, 2fvex 5574 . . 3  |-  ( x `
 X )  e. 
_V
4 mapsncnv.f . . 3  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
53, 4fnmpti 5382 . 2  |-  F  Fn  ( B  ^m  S )
6 mapsncnv.s . . . . 5  |-  S  =  { X }
72snex 4214 . . . . 5  |-  { X }  e.  _V
86, 7eqeltri 2266 . . . 4  |-  S  e. 
_V
9 vex 2763 . . . . 5  |-  y  e. 
_V
109snex 4214 . . . 4  |-  { y }  e.  _V
118, 10xpex 4774 . . 3  |-  ( S  X.  { y } )  e.  _V
12 mapsncnv.b . . . 4  |-  B  e. 
_V
136, 12, 2, 4mapsncnv 6749 . . 3  |-  `' F  =  ( y  e.  B  |->  ( S  X.  { y } ) )
1411, 13fnmpti 5382 . 2  |-  `' F  Fn  B
15 dff1o4 5508 . 2  |-  ( F : ( B  ^m  S ) -1-1-onto-> B  <->  ( F  Fn  ( B  ^m  S )  /\  `' F  Fn  B ) )
165, 14, 15mpbir2an 944 1  |-  F :
( B  ^m  S
)
-1-1-onto-> B
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3618    |-> cmpt 4090    X. cxp 4657   `'ccnv 4658    Fn wfn 5249   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918    ^m cmap 6702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704
This theorem is referenced by:  mapsnf1o3  6751
  Copyright terms: Public domain W3C validator