ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi9 Unicode version

Theorem sbthlemi9 7132
Description: Lemma for isbth 7134. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlemi9  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlemi9
StepHypRef Expression
1 simp2 1022 . . . . . . . . . 10  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  f : A -1-1-> B )
2 df-f1 5323 . . . . . . . . . 10  |-  ( f : A -1-1-> B  <->  ( f : A --> B  /\  Fun  `' f ) )
31, 2sylib 122 . . . . . . . . 9  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  ( f : A --> B  /\  Fun  `' f ) )
43simpld 112 . . . . . . . 8  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  f : A
--> B )
5 df-f 5322 . . . . . . . 8  |-  ( f : A --> B  <->  ( f  Fn  A  /\  ran  f  C_  B ) )
64, 5sylib 122 . . . . . . 7  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  ( f  Fn  A  /\  ran  f  C_  B ) )
76simpld 112 . . . . . 6  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  f  Fn  A )
8 df-fn 5321 . . . . . 6  |-  ( f  Fn  A  <->  ( Fun  f  /\  dom  f  =  A ) )
97, 8sylib 122 . . . . 5  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  ( Fun  f  /\  dom  f  =  A ) )
109simpld 112 . . . 4  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  Fun  f )
11 simp3 1023 . . . . . 6  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  g : B -1-1-> A )
12 df-f1 5323 . . . . . 6  |-  ( g : B -1-1-> A  <->  ( g : B --> A  /\  Fun  `' g ) )
1311, 12sylib 122 . . . . 5  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  ( g : B --> A  /\  Fun  `' g ) )
1413simprd 114 . . . 4  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  Fun  `' g )
15 sbthlem.1 . . . . 5  |-  A  e. 
_V
16 sbthlem.2 . . . . 5  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
17 sbthlem.3 . . . . 5  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
1815, 16, 17sbthlem7 7130 . . . 4  |-  ( ( Fun  f  /\  Fun  `' g )  ->  Fun  H )
1910, 14, 18syl2anc 411 . . 3  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  Fun  H )
20 simp1 1021 . . . 4  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  -> EXMID )
219simprd 114 . . . 4  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  dom  f  =  A )
2213simpld 112 . . . . . 6  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  g : B
--> A )
23 df-f 5322 . . . . . 6  |-  ( g : B --> A  <->  ( g  Fn  B  /\  ran  g  C_  A ) )
2422, 23sylib 122 . . . . 5  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  ( g  Fn  B  /\  ran  g  C_  A ) )
2524simprd 114 . . . 4  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  ran  g  C_  A )
2615, 16, 17sbthlemi5 7128 . . . 4  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  ->  dom  H  =  A )
2720, 21, 25, 26syl12anc 1269 . . 3  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  dom  H  =  A )
28 df-fn 5321 . . 3  |-  ( H  Fn  A  <->  ( Fun  H  /\  dom  H  =  A ) )
2919, 27, 28sylanbrc 417 . 2  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H  Fn  A )
303simprd 114 . . . 4  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  Fun  `' f )
3124simpld 112 . . . . . 6  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  g  Fn  B )
32 df-fn 5321 . . . . . 6  |-  ( g  Fn  B  <->  ( Fun  g  /\  dom  g  =  B ) )
3331, 32sylib 122 . . . . 5  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  ( Fun  g  /\  dom  g  =  B ) )
3433, 25jca 306 . . . 4  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) )
3515, 16, 17sbthlemi8 7131 . . . 4  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H )
3620, 30, 34, 14, 35syl22anc 1272 . . 3  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  Fun  `' H
)
376simprd 114 . . . 4  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  ran  f  C_  B )
3833simprd 114 . . . . 5  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  dom  g  =  B )
3938, 25jca 306 . . . 4  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  ( dom  g  =  B  /\  ran  g  C_  A ) )
40 df-rn 4730 . . . . 5  |-  ran  H  =  dom  `' H
4115, 16, 17sbthlemi6 7129 . . . . 5  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
4240, 41eqtr3id 2276 . . . 4  |-  ( ( (EXMID 
/\  ran  f  C_  B )  /\  (
( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B
)
4320, 37, 39, 14, 42syl22anc 1272 . . 3  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  dom  `' H  =  B )
44 df-fn 5321 . . 3  |-  ( `' H  Fn  B  <->  ( Fun  `' H  /\  dom  `' H  =  B )
)
4536, 43, 44sylanbrc 417 . 2  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  `' H  Fn  B )
46 dff1o4 5580 . 2  |-  ( H : A -1-1-onto-> B  <->  ( H  Fn  A  /\  `' H  Fn  B ) )
4729, 45, 46sylanbrc 417 1  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   _Vcvv 2799    \ cdif 3194    u. cun 3195    C_ wss 3197   U.cuni 3888  EXMIDwem 4278   `'ccnv 4718   dom cdm 4719   ran crn 4720    |` cres 4721   "cima 4722   Fun wfun 5312    Fn wfn 5313   -->wf 5314   -1-1->wf1 5315   -1-1-onto->wf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-exmid 4279  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325
This theorem is referenced by:  sbthlemi10  7133
  Copyright terms: Public domain W3C validator