| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlemi9 | Unicode version | ||
| Description: Lemma for isbth 7071. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| sbthlem.3 |
|
| Ref | Expression |
|---|---|
| sbthlemi9 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 |
. . . . . . . . . 10
| |
| 2 | df-f1 5277 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | sylib 122 |
. . . . . . . . 9
|
| 4 | 3 | simpld 112 |
. . . . . . . 8
|
| 5 | df-f 5276 |
. . . . . . . 8
| |
| 6 | 4, 5 | sylib 122 |
. . . . . . 7
|
| 7 | 6 | simpld 112 |
. . . . . 6
|
| 8 | df-fn 5275 |
. . . . . 6
| |
| 9 | 7, 8 | sylib 122 |
. . . . 5
|
| 10 | 9 | simpld 112 |
. . . 4
|
| 11 | simp3 1002 |
. . . . . 6
| |
| 12 | df-f1 5277 |
. . . . . 6
| |
| 13 | 11, 12 | sylib 122 |
. . . . 5
|
| 14 | 13 | simprd 114 |
. . . 4
|
| 15 | sbthlem.1 |
. . . . 5
| |
| 16 | sbthlem.2 |
. . . . 5
| |
| 17 | sbthlem.3 |
. . . . 5
| |
| 18 | 15, 16, 17 | sbthlem7 7067 |
. . . 4
|
| 19 | 10, 14, 18 | syl2anc 411 |
. . 3
|
| 20 | simp1 1000 |
. . . 4
| |
| 21 | 9 | simprd 114 |
. . . 4
|
| 22 | 13 | simpld 112 |
. . . . . 6
|
| 23 | df-f 5276 |
. . . . . 6
| |
| 24 | 22, 23 | sylib 122 |
. . . . 5
|
| 25 | 24 | simprd 114 |
. . . 4
|
| 26 | 15, 16, 17 | sbthlemi5 7065 |
. . . 4
|
| 27 | 20, 21, 25, 26 | syl12anc 1248 |
. . 3
|
| 28 | df-fn 5275 |
. . 3
| |
| 29 | 19, 27, 28 | sylanbrc 417 |
. 2
|
| 30 | 3 | simprd 114 |
. . . 4
|
| 31 | 24 | simpld 112 |
. . . . . 6
|
| 32 | df-fn 5275 |
. . . . . 6
| |
| 33 | 31, 32 | sylib 122 |
. . . . 5
|
| 34 | 33, 25 | jca 306 |
. . . 4
|
| 35 | 15, 16, 17 | sbthlemi8 7068 |
. . . 4
|
| 36 | 20, 30, 34, 14, 35 | syl22anc 1251 |
. . 3
|
| 37 | 6 | simprd 114 |
. . . 4
|
| 38 | 33 | simprd 114 |
. . . . 5
|
| 39 | 38, 25 | jca 306 |
. . . 4
|
| 40 | df-rn 4687 |
. . . . 5
| |
| 41 | 15, 16, 17 | sbthlemi6 7066 |
. . . . 5
|
| 42 | 40, 41 | eqtr3id 2252 |
. . . 4
|
| 43 | 20, 37, 39, 14, 42 | syl22anc 1251 |
. . 3
|
| 44 | df-fn 5275 |
. . 3
| |
| 45 | 36, 43, 44 | sylanbrc 417 |
. 2
|
| 46 | dff1o4 5532 |
. 2
| |
| 47 | 29, 45, 46 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-exmid 4240 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 |
| This theorem is referenced by: sbthlemi10 7070 |
| Copyright terms: Public domain | W3C validator |