Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlemi9 | Unicode version |
Description: Lemma for isbth 6908. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 | |
sbthlem.3 |
Ref | Expression |
---|---|
sbthlemi9 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 983 | . . . . . . . . . 10 EXMID | |
2 | df-f1 5174 | . . . . . . . . . 10 | |
3 | 1, 2 | sylib 121 | . . . . . . . . 9 EXMID |
4 | 3 | simpld 111 | . . . . . . . 8 EXMID |
5 | df-f 5173 | . . . . . . . 8 | |
6 | 4, 5 | sylib 121 | . . . . . . 7 EXMID |
7 | 6 | simpld 111 | . . . . . 6 EXMID |
8 | df-fn 5172 | . . . . . 6 | |
9 | 7, 8 | sylib 121 | . . . . 5 EXMID |
10 | 9 | simpld 111 | . . . 4 EXMID |
11 | simp3 984 | . . . . . 6 EXMID | |
12 | df-f1 5174 | . . . . . 6 | |
13 | 11, 12 | sylib 121 | . . . . 5 EXMID |
14 | 13 | simprd 113 | . . . 4 EXMID |
15 | sbthlem.1 | . . . . 5 | |
16 | sbthlem.2 | . . . . 5 | |
17 | sbthlem.3 | . . . . 5 | |
18 | 15, 16, 17 | sbthlem7 6904 | . . . 4 |
19 | 10, 14, 18 | syl2anc 409 | . . 3 EXMID |
20 | simp1 982 | . . . 4 EXMID EXMID | |
21 | 9 | simprd 113 | . . . 4 EXMID |
22 | 13 | simpld 111 | . . . . . 6 EXMID |
23 | df-f 5173 | . . . . . 6 | |
24 | 22, 23 | sylib 121 | . . . . 5 EXMID |
25 | 24 | simprd 113 | . . . 4 EXMID |
26 | 15, 16, 17 | sbthlemi5 6902 | . . . 4 EXMID |
27 | 20, 21, 25, 26 | syl12anc 1218 | . . 3 EXMID |
28 | df-fn 5172 | . . 3 | |
29 | 19, 27, 28 | sylanbrc 414 | . 2 EXMID |
30 | 3 | simprd 113 | . . . 4 EXMID |
31 | 24 | simpld 111 | . . . . . 6 EXMID |
32 | df-fn 5172 | . . . . . 6 | |
33 | 31, 32 | sylib 121 | . . . . 5 EXMID |
34 | 33, 25 | jca 304 | . . . 4 EXMID |
35 | 15, 16, 17 | sbthlemi8 6905 | . . . 4 EXMID |
36 | 20, 30, 34, 14, 35 | syl22anc 1221 | . . 3 EXMID |
37 | 6 | simprd 113 | . . . 4 EXMID |
38 | 33 | simprd 113 | . . . . 5 EXMID |
39 | 38, 25 | jca 304 | . . . 4 EXMID |
40 | df-rn 4596 | . . . . 5 | |
41 | 15, 16, 17 | sbthlemi6 6903 | . . . . 5 EXMID |
42 | 40, 41 | syl5eqr 2204 | . . . 4 EXMID |
43 | 20, 37, 39, 14, 42 | syl22anc 1221 | . . 3 EXMID |
44 | df-fn 5172 | . . 3 | |
45 | 36, 43, 44 | sylanbrc 414 | . 2 EXMID |
46 | dff1o4 5421 | . 2 | |
47 | 29, 45, 46 | sylanbrc 414 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 cab 2143 cvv 2712 cdif 3099 cun 3100 wss 3102 cuni 3772 EXMIDwem 4155 ccnv 4584 cdm 4585 crn 4586 cres 4587 cima 4588 wfun 5163 wfn 5164 wf 5165 wf1 5166 wf1o 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-exmid 4156 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 |
This theorem is referenced by: sbthlemi10 6907 |
Copyright terms: Public domain | W3C validator |