Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlemi9 | Unicode version |
Description: Lemma for isbth 6932. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 | |
sbthlem.3 |
Ref | Expression |
---|---|
sbthlemi9 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 988 | . . . . . . . . . 10 EXMID | |
2 | df-f1 5193 | . . . . . . . . . 10 | |
3 | 1, 2 | sylib 121 | . . . . . . . . 9 EXMID |
4 | 3 | simpld 111 | . . . . . . . 8 EXMID |
5 | df-f 5192 | . . . . . . . 8 | |
6 | 4, 5 | sylib 121 | . . . . . . 7 EXMID |
7 | 6 | simpld 111 | . . . . . 6 EXMID |
8 | df-fn 5191 | . . . . . 6 | |
9 | 7, 8 | sylib 121 | . . . . 5 EXMID |
10 | 9 | simpld 111 | . . . 4 EXMID |
11 | simp3 989 | . . . . . 6 EXMID | |
12 | df-f1 5193 | . . . . . 6 | |
13 | 11, 12 | sylib 121 | . . . . 5 EXMID |
14 | 13 | simprd 113 | . . . 4 EXMID |
15 | sbthlem.1 | . . . . 5 | |
16 | sbthlem.2 | . . . . 5 | |
17 | sbthlem.3 | . . . . 5 | |
18 | 15, 16, 17 | sbthlem7 6928 | . . . 4 |
19 | 10, 14, 18 | syl2anc 409 | . . 3 EXMID |
20 | simp1 987 | . . . 4 EXMID EXMID | |
21 | 9 | simprd 113 | . . . 4 EXMID |
22 | 13 | simpld 111 | . . . . . 6 EXMID |
23 | df-f 5192 | . . . . . 6 | |
24 | 22, 23 | sylib 121 | . . . . 5 EXMID |
25 | 24 | simprd 113 | . . . 4 EXMID |
26 | 15, 16, 17 | sbthlemi5 6926 | . . . 4 EXMID |
27 | 20, 21, 25, 26 | syl12anc 1226 | . . 3 EXMID |
28 | df-fn 5191 | . . 3 | |
29 | 19, 27, 28 | sylanbrc 414 | . 2 EXMID |
30 | 3 | simprd 113 | . . . 4 EXMID |
31 | 24 | simpld 111 | . . . . . 6 EXMID |
32 | df-fn 5191 | . . . . . 6 | |
33 | 31, 32 | sylib 121 | . . . . 5 EXMID |
34 | 33, 25 | jca 304 | . . . 4 EXMID |
35 | 15, 16, 17 | sbthlemi8 6929 | . . . 4 EXMID |
36 | 20, 30, 34, 14, 35 | syl22anc 1229 | . . 3 EXMID |
37 | 6 | simprd 113 | . . . 4 EXMID |
38 | 33 | simprd 113 | . . . . 5 EXMID |
39 | 38, 25 | jca 304 | . . . 4 EXMID |
40 | df-rn 4615 | . . . . 5 | |
41 | 15, 16, 17 | sbthlemi6 6927 | . . . . 5 EXMID |
42 | 40, 41 | eqtr3id 2213 | . . . 4 EXMID |
43 | 20, 37, 39, 14, 42 | syl22anc 1229 | . . 3 EXMID |
44 | df-fn 5191 | . . 3 | |
45 | 36, 43, 44 | sylanbrc 414 | . 2 EXMID |
46 | dff1o4 5440 | . 2 | |
47 | 29, 45, 46 | sylanbrc 414 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cab 2151 cvv 2726 cdif 3113 cun 3114 wss 3116 cuni 3789 EXMIDwem 4173 ccnv 4603 cdm 4604 crn 4605 cres 4606 cima 4607 wfun 5182 wfn 5183 wf 5184 wf1 5185 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-exmid 4174 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: sbthlemi10 6931 |
Copyright terms: Public domain | W3C validator |