ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvd Unicode version

Theorem f1ocnvd 6120
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1  |-  F  =  ( x  e.  A  |->  C )
f1od.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  W )
f1od.3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  X )
f1od.4  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
Assertion
Ref Expression
f1ocnvd  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    F( x, y)    W( x, y)    X( x, y)

Proof of Theorem f1ocnvd
StepHypRef Expression
1 f1od.2 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  W )
21ralrimiva 2567 . . . 4  |-  ( ph  ->  A. x  e.  A  C  e.  W )
3 f1od.1 . . . . 5  |-  F  =  ( x  e.  A  |->  C )
43fnmpt 5380 . . . 4  |-  ( A. x  e.  A  C  e.  W  ->  F  Fn  A )
52, 4syl 14 . . 3  |-  ( ph  ->  F  Fn  A )
6 f1od.3 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  X )
76ralrimiva 2567 . . . . 5  |-  ( ph  ->  A. y  e.  B  D  e.  X )
8 eqid 2193 . . . . . 6  |-  ( y  e.  B  |->  D )  =  ( y  e.  B  |->  D )
98fnmpt 5380 . . . . 5  |-  ( A. y  e.  B  D  e.  X  ->  ( y  e.  B  |->  D )  Fn  B )
107, 9syl 14 . . . 4  |-  ( ph  ->  ( y  e.  B  |->  D )  Fn  B
)
11 f1od.4 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
1211opabbidv 4095 . . . . . 6  |-  ( ph  ->  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  C ) }  =  { <. y ,  x >.  |  ( y  e.  B  /\  x  =  D ) } )
13 df-mpt 4092 . . . . . . . . 9  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
143, 13eqtri 2214 . . . . . . . 8  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }
1514cnveqi 4837 . . . . . . 7  |-  `' F  =  `' { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }
16 cnvopab 5067 . . . . . . 7  |-  `' { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  C ) }
1715, 16eqtri 2214 . . . . . 6  |-  `' F  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  C ) }
18 df-mpt 4092 . . . . . 6  |-  ( y  e.  B  |->  D )  =  { <. y ,  x >.  |  (
y  e.  B  /\  x  =  D ) }
1912, 17, 183eqtr4g 2251 . . . . 5  |-  ( ph  ->  `' F  =  (
y  e.  B  |->  D ) )
2019fneq1d 5344 . . . 4  |-  ( ph  ->  ( `' F  Fn  B 
<->  ( y  e.  B  |->  D )  Fn  B
) )
2110, 20mpbird 167 . . 3  |-  ( ph  ->  `' F  Fn  B
)
22 dff1o4 5508 . . 3  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
235, 21, 22sylanbrc 417 . 2  |-  ( ph  ->  F : A -1-1-onto-> B )
2423, 19jca 306 1  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   {copab 4089    |-> cmpt 4090   `'ccnv 4658    Fn wfn 5249   -1-1-onto->wf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  f1od  6121  f1ocnv2d  6122
  Copyright terms: Public domain W3C validator