ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvd Unicode version

Theorem f1ocnvd 6040
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1  |-  F  =  ( x  e.  A  |->  C )
f1od.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  W )
f1od.3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  X )
f1od.4  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
Assertion
Ref Expression
f1ocnvd  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    F( x, y)    W( x, y)    X( x, y)

Proof of Theorem f1ocnvd
StepHypRef Expression
1 f1od.2 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  W )
21ralrimiva 2539 . . . 4  |-  ( ph  ->  A. x  e.  A  C  e.  W )
3 f1od.1 . . . . 5  |-  F  =  ( x  e.  A  |->  C )
43fnmpt 5314 . . . 4  |-  ( A. x  e.  A  C  e.  W  ->  F  Fn  A )
52, 4syl 14 . . 3  |-  ( ph  ->  F  Fn  A )
6 f1od.3 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  X )
76ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. y  e.  B  D  e.  X )
8 eqid 2165 . . . . . 6  |-  ( y  e.  B  |->  D )  =  ( y  e.  B  |->  D )
98fnmpt 5314 . . . . 5  |-  ( A. y  e.  B  D  e.  X  ->  ( y  e.  B  |->  D )  Fn  B )
107, 9syl 14 . . . 4  |-  ( ph  ->  ( y  e.  B  |->  D )  Fn  B
)
11 f1od.4 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
1211opabbidv 4048 . . . . . 6  |-  ( ph  ->  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  C ) }  =  { <. y ,  x >.  |  ( y  e.  B  /\  x  =  D ) } )
13 df-mpt 4045 . . . . . . . . 9  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
143, 13eqtri 2186 . . . . . . . 8  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }
1514cnveqi 4779 . . . . . . 7  |-  `' F  =  `' { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }
16 cnvopab 5005 . . . . . . 7  |-  `' { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  C ) }
1715, 16eqtri 2186 . . . . . 6  |-  `' F  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  C ) }
18 df-mpt 4045 . . . . . 6  |-  ( y  e.  B  |->  D )  =  { <. y ,  x >.  |  (
y  e.  B  /\  x  =  D ) }
1912, 17, 183eqtr4g 2224 . . . . 5  |-  ( ph  ->  `' F  =  (
y  e.  B  |->  D ) )
2019fneq1d 5278 . . . 4  |-  ( ph  ->  ( `' F  Fn  B 
<->  ( y  e.  B  |->  D )  Fn  B
) )
2110, 20mpbird 166 . . 3  |-  ( ph  ->  `' F  Fn  B
)
22 dff1o4 5440 . . 3  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
235, 21, 22sylanbrc 414 . 2  |-  ( ph  ->  F : A -1-1-onto-> B )
2423, 19jca 304 1  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   {copab 4042    |-> cmpt 4043   `'ccnv 4603    Fn wfn 5183   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  f1od  6041  f1ocnv2d  6042
  Copyright terms: Public domain W3C validator