| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ocnvd | Unicode version | ||
| Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| f1od.1 |
|
| f1od.2 |
|
| f1od.3 |
|
| f1od.4 |
|
| Ref | Expression |
|---|---|
| f1ocnvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1od.2 |
. . . . 5
| |
| 2 | 1 | ralrimiva 2603 |
. . . 4
|
| 3 | f1od.1 |
. . . . 5
| |
| 4 | 3 | fnmpt 5450 |
. . . 4
|
| 5 | 2, 4 | syl 14 |
. . 3
|
| 6 | f1od.3 |
. . . . . 6
| |
| 7 | 6 | ralrimiva 2603 |
. . . . 5
|
| 8 | eqid 2229 |
. . . . . 6
| |
| 9 | 8 | fnmpt 5450 |
. . . . 5
|
| 10 | 7, 9 | syl 14 |
. . . 4
|
| 11 | f1od.4 |
. . . . . . 7
| |
| 12 | 11 | opabbidv 4150 |
. . . . . 6
|
| 13 | df-mpt 4147 |
. . . . . . . . 9
| |
| 14 | 3, 13 | eqtri 2250 |
. . . . . . . 8
|
| 15 | 14 | cnveqi 4897 |
. . . . . . 7
|
| 16 | cnvopab 5130 |
. . . . . . 7
| |
| 17 | 15, 16 | eqtri 2250 |
. . . . . 6
|
| 18 | df-mpt 4147 |
. . . . . 6
| |
| 19 | 12, 17, 18 | 3eqtr4g 2287 |
. . . . 5
|
| 20 | 19 | fneq1d 5411 |
. . . 4
|
| 21 | 10, 20 | mpbird 167 |
. . 3
|
| 22 | dff1o4 5580 |
. . 3
| |
| 23 | 5, 21, 22 | sylanbrc 417 |
. 2
|
| 24 | 23, 19 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: f1od 6209 f1ocnv2d 6210 |
| Copyright terms: Public domain | W3C validator |