ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvf1o Unicode version

Theorem grpinvf1o 12769
Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpinvinv.b  |-  B  =  ( Base `  G
)
grpinvinv.n  |-  N  =  ( invg `  G )
grpinv11.g  |-  ( ph  ->  G  e.  Grp )
Assertion
Ref Expression
grpinvf1o  |-  ( ph  ->  N : B -1-1-onto-> B )

Proof of Theorem grpinvf1o
StepHypRef Expression
1 grpinv11.g . . . 4  |-  ( ph  ->  G  e.  Grp )
2 grpinvinv.b . . . . 5  |-  B  =  ( Base `  G
)
3 grpinvinv.n . . . . 5  |-  N  =  ( invg `  G )
42, 3grpinvf 12750 . . . 4  |-  ( G  e.  Grp  ->  N : B --> B )
51, 4syl 14 . . 3  |-  ( ph  ->  N : B --> B )
65ffnd 5348 . 2  |-  ( ph  ->  N  Fn  B )
72, 3grpinvcnv 12767 . . . . 5  |-  ( G  e.  Grp  ->  `' N  =  N )
81, 7syl 14 . . . 4  |-  ( ph  ->  `' N  =  N
)
98fneq1d 5288 . . 3  |-  ( ph  ->  ( `' N  Fn  B 
<->  N  Fn  B ) )
106, 9mpbird 166 . 2  |-  ( ph  ->  `' N  Fn  B
)
11 dff1o4 5450 . 2  |-  ( N : B -1-1-onto-> B  <->  ( N  Fn  B  /\  `' N  Fn  B ) )
126, 10, 11sylanbrc 415 1  |-  ( ph  ->  N : B -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   `'ccnv 4610    Fn wfn 5193   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198   Basecbs 12416   Grpcgrp 12708   invgcminusg 12709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-0g 12598  df-mgm 12610  df-sgrp 12643  df-mnd 12653  df-grp 12711  df-minusg 12712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator