ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvsn Unicode version

Theorem funcnvsn 5163
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 5166 via cnvsn 5016, but stating it this way allows us to skip the sethood assumptions on  A and  B. (Contributed by NM, 30-Apr-2015.)
Assertion
Ref Expression
funcnvsn  |-  Fun  `' { <. A ,  B >. }

Proof of Theorem funcnvsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4912 . 2  |-  Rel  `' { <. A ,  B >. }
2 moeq 2854 . . . 4  |-  E* y 
y  =  A
3 vex 2684 . . . . . . . 8  |-  x  e. 
_V
4 vex 2684 . . . . . . . 8  |-  y  e. 
_V
53, 4brcnv 4717 . . . . . . 7  |-  ( x `' { <. A ,  B >. } y  <->  y { <. A ,  B >. } x )
6 df-br 3925 . . . . . . 7  |-  ( y { <. A ,  B >. } x  <->  <. y ,  x >.  e.  { <. A ,  B >. } )
75, 6bitri 183 . . . . . 6  |-  ( x `' { <. A ,  B >. } y  <->  <. y ,  x >.  e.  { <. A ,  B >. } )
8 elsni 3540 . . . . . . 7  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  ->  <. y ,  x >.  =  <. A ,  B >. )
94, 3opth1 4153 . . . . . . 7  |-  ( <.
y ,  x >.  = 
<. A ,  B >.  -> 
y  =  A )
108, 9syl 14 . . . . . 6  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  ->  y  =  A )
117, 10sylbi 120 . . . . 5  |-  ( x `' { <. A ,  B >. } y  ->  y  =  A )
1211moimi 2062 . . . 4  |-  ( E* y  y  =  A  ->  E* y  x `' { <. A ,  B >. } y )
132, 12ax-mp 5 . . 3  |-  E* y  x `' { <. A ,  B >. } y
1413ax-gen 1425 . 2  |-  A. x E* y  x `' { <. A ,  B >. } y
15 dffun6 5132 . 2  |-  ( Fun  `' { <. A ,  B >. }  <->  ( Rel  `' { <. A ,  B >. }  /\  A. x E* y  x `' { <. A ,  B >. } y ) )
161, 14, 15mpbir2an 926 1  |-  Fun  `' { <. A ,  B >. }
Colors of variables: wff set class
Syntax hints:   A.wal 1329    = wceq 1331    e. wcel 1480   E*wmo 1998   {csn 3522   <.cop 3525   class class class wbr 3924   `'ccnv 4533   Rel wrel 4539   Fun wfun 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-fun 5120
This theorem is referenced by:  funsng  5164
  Copyright terms: Public domain W3C validator