ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvsn Unicode version

Theorem funcnvsn 5303
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 5306 via cnvsn 5152, but stating it this way allows us to skip the sethood assumptions on  A and  B. (Contributed by NM, 30-Apr-2015.)
Assertion
Ref Expression
funcnvsn  |-  Fun  `' { <. A ,  B >. }

Proof of Theorem funcnvsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5047 . 2  |-  Rel  `' { <. A ,  B >. }
2 moeq 2939 . . . 4  |-  E* y 
y  =  A
3 vex 2766 . . . . . . . 8  |-  x  e. 
_V
4 vex 2766 . . . . . . . 8  |-  y  e. 
_V
53, 4brcnv 4849 . . . . . . 7  |-  ( x `' { <. A ,  B >. } y  <->  y { <. A ,  B >. } x )
6 df-br 4034 . . . . . . 7  |-  ( y { <. A ,  B >. } x  <->  <. y ,  x >.  e.  { <. A ,  B >. } )
75, 6bitri 184 . . . . . 6  |-  ( x `' { <. A ,  B >. } y  <->  <. y ,  x >.  e.  { <. A ,  B >. } )
8 elsni 3640 . . . . . . 7  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  ->  <. y ,  x >.  =  <. A ,  B >. )
94, 3opth1 4269 . . . . . . 7  |-  ( <.
y ,  x >.  = 
<. A ,  B >.  -> 
y  =  A )
108, 9syl 14 . . . . . 6  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  ->  y  =  A )
117, 10sylbi 121 . . . . 5  |-  ( x `' { <. A ,  B >. } y  ->  y  =  A )
1211moimi 2110 . . . 4  |-  ( E* y  y  =  A  ->  E* y  x `' { <. A ,  B >. } y )
132, 12ax-mp 5 . . 3  |-  E* y  x `' { <. A ,  B >. } y
1413ax-gen 1463 . 2  |-  A. x E* y  x `' { <. A ,  B >. } y
15 dffun6 5272 . 2  |-  ( Fun  `' { <. A ,  B >. }  <->  ( Rel  `' { <. A ,  B >. }  /\  A. x E* y  x `' { <. A ,  B >. } y ) )
161, 14, 15mpbir2an 944 1  |-  Fun  `' { <. A ,  B >. }
Colors of variables: wff set class
Syntax hints:   A.wal 1362    = wceq 1364   E*wmo 2046    e. wcel 2167   {csn 3622   <.cop 3625   class class class wbr 4033   `'ccnv 4662   Rel wrel 4668   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-fun 5260
This theorem is referenced by:  funsng  5304
  Copyright terms: Public domain W3C validator