| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funcnvsn | Unicode version | ||
| Description: The converse singleton of
an ordered pair is a function. This is
equivalent to funsn 5316 via cnvsn 5162, but stating it this way allows us to
skip the sethood assumptions on |
| Ref | Expression |
|---|---|
| funcnvsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5057 |
. 2
| |
| 2 | moeq 2947 |
. . . 4
| |
| 3 | vex 2774 |
. . . . . . . 8
| |
| 4 | vex 2774 |
. . . . . . . 8
| |
| 5 | 3, 4 | brcnv 4859 |
. . . . . . 7
|
| 6 | df-br 4044 |
. . . . . . 7
| |
| 7 | 5, 6 | bitri 184 |
. . . . . 6
|
| 8 | elsni 3650 |
. . . . . . 7
| |
| 9 | 4, 3 | opth1 4279 |
. . . . . . 7
|
| 10 | 8, 9 | syl 14 |
. . . . . 6
|
| 11 | 7, 10 | sylbi 121 |
. . . . 5
|
| 12 | 11 | moimi 2118 |
. . . 4
|
| 13 | 2, 12 | ax-mp 5 |
. . 3
|
| 14 | 13 | ax-gen 1471 |
. 2
|
| 15 | dffun6 5282 |
. 2
| |
| 16 | 1, 14, 15 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-fun 5270 |
| This theorem is referenced by: funsng 5314 |
| Copyright terms: Public domain | W3C validator |