ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval Unicode version

Theorem shftval 11078
Description: Value of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) `  B )  =  ( F `  ( B  -  A
) ) )

Proof of Theorem shftval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . 5  |-  F  e. 
_V
21shftfib 11076 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) } ) )
32eleq2d 2274 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( x  e.  ( ( F  shift  A )
" { B }
)  <->  x  e.  ( F " { ( B  -  A ) } ) ) )
43iotabidv 5253 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( iota x x  e.  ( ( F 
shift  A ) " { B } ) )  =  ( iota x x  e.  ( F " { ( B  -  A ) } ) ) )
5 simpr 110 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
6 dffv3g 5571 . . 3  |-  ( B  e.  CC  ->  (
( F  shift  A ) `
 B )  =  ( iota x x  e.  ( ( F 
shift  A ) " { B } ) ) )
75, 6syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) `  B )  =  ( iota x x  e.  ( ( F  shift  A ) " { B } ) ) )
8 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
95, 8subcld 8382 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A
)  e.  CC )
10 dffv3g 5571 . . 3  |-  ( ( B  -  A )  e.  CC  ->  ( F `  ( B  -  A ) )  =  ( iota x x  e.  ( F " { ( B  -  A ) } ) ) )
119, 10syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( F `  ( B  -  A )
)  =  ( iota
x x  e.  ( F " { ( B  -  A ) } ) ) )
124, 7, 113eqtr4d 2247 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) `  B )  =  ( F `  ( B  -  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   _Vcvv 2771   {csn 3632   "cima 4677   iotacio 5229   ` cfv 5270  (class class class)co 5943   CCcc 7922    - cmin 8242    shift cshi 11067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-resscn 8016  ax-1cn 8017  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244  df-shft 11068
This theorem is referenced by:  shftval2  11079  shftval4  11081  shftval5  11082  shftf  11083  shftvalg  11089  isumshft  11743
  Copyright terms: Public domain W3C validator