ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval Unicode version

Theorem shftval 10789
Description: Value of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) `  B )  =  ( F `  ( B  -  A
) ) )

Proof of Theorem shftval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . 5  |-  F  e. 
_V
21shftfib 10787 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) } ) )
32eleq2d 2240 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( x  e.  ( ( F  shift  A )
" { B }
)  <->  x  e.  ( F " { ( B  -  A ) } ) ) )
43iotabidv 5181 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( iota x x  e.  ( ( F 
shift  A ) " { B } ) )  =  ( iota x x  e.  ( F " { ( B  -  A ) } ) ) )
5 simpr 109 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
6 dffv3g 5492 . . 3  |-  ( B  e.  CC  ->  (
( F  shift  A ) `
 B )  =  ( iota x x  e.  ( ( F 
shift  A ) " { B } ) ) )
75, 6syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) `  B )  =  ( iota x x  e.  ( ( F  shift  A ) " { B } ) ) )
8 simpl 108 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
95, 8subcld 8230 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A
)  e.  CC )
10 dffv3g 5492 . . 3  |-  ( ( B  -  A )  e.  CC  ->  ( F `  ( B  -  A ) )  =  ( iota x x  e.  ( F " { ( B  -  A ) } ) ) )
119, 10syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( F `  ( B  -  A )
)  =  ( iota
x x  e.  ( F " { ( B  -  A ) } ) ) )
124, 7, 113eqtr4d 2213 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) `  B )  =  ( F `  ( B  -  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730   {csn 3583   "cima 4614   iotacio 5158   ` cfv 5198  (class class class)co 5853   CCcc 7772    - cmin 8090    shift cshi 10778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092  df-shft 10779
This theorem is referenced by:  shftval2  10790  shftval4  10792  shftval5  10793  shftf  10794  shftvalg  10800  isumshft  11453
  Copyright terms: Public domain W3C validator