ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvco2 Unicode version

Theorem fvco2 5627
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fvco2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X
)  =  ( F `
 ( G `  X ) ) )

Proof of Theorem fvco2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 imaco 5172 . . . . 5  |-  ( ( F  o.  G )
" { X }
)  =  ( F
" ( G " { X } ) )
2 fnsnfv 5617 . . . . . 6  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  { ( G `  X ) }  =  ( G " { X } ) )
32imaeq2d 5006 . . . . 5  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( F " {
( G `  X
) } )  =  ( F " ( G " { X }
) ) )
41, 3eqtr4id 2245 . . . 4  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) " { X } )  =  ( F " { ( G `  X ) } ) )
54eleq2d 2263 . . 3  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( x  e.  ( ( F  o.  G
) " { X } )  <->  x  e.  ( F " { ( G `  X ) } ) ) )
65iotabidv 5238 . 2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( iota x x  e.  ( ( F  o.  G ) " { X } ) )  =  ( iota x x  e.  ( F " { ( G `  X ) } ) ) )
7 dffv3g 5551 . . 3  |-  ( X  e.  A  ->  (
( F  o.  G
) `  X )  =  ( iota x x  e.  ( ( F  o.  G ) " { X } ) ) )
87adantl 277 . 2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X
)  =  ( iota
x x  e.  ( ( F  o.  G
) " { X } ) ) )
9 funfvex 5572 . . . 4  |-  ( ( Fun  G  /\  X  e.  dom  G )  -> 
( G `  X
)  e.  _V )
109funfni 5355 . . 3  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( G `  X
)  e.  _V )
11 dffv3g 5551 . . 3  |-  ( ( G `  X )  e.  _V  ->  ( F `  ( G `  X ) )  =  ( iota x x  e.  ( F " { ( G `  X ) } ) ) )
1210, 11syl 14 . 2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( F `  ( G `  X )
)  =  ( iota
x x  e.  ( F " { ( G `  X ) } ) ) )
136, 8, 123eqtr4d 2236 1  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X
)  =  ( F `
 ( G `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3619   "cima 4663    o. ccom 4664   iotacio 5214    Fn wfn 5250   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by:  fvco  5628  fvco3  5629  ofco  6151  updjudhcoinlf  7141  updjudhcoinrg  7142  updjud  7143  caseinl  7152  caseinr  7153  ctm  7170  enomnilem  7199  enmkvlem  7222  enwomnilem  7230  nninfctlemfo  12180  gsumwmhm  13073  ringidvalg  13460  lidlvalg  13970  rspvalg  13971
  Copyright terms: Public domain W3C validator