| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvco2 | Unicode version | ||
| Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| fvco2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco 5189 |
. . . . 5
| |
| 2 | fnsnfv 5640 |
. . . . . 6
| |
| 3 | 2 | imaeq2d 5023 |
. . . . 5
|
| 4 | 1, 3 | eqtr4id 2257 |
. . . 4
|
| 5 | 4 | eleq2d 2275 |
. . 3
|
| 6 | 5 | iotabidv 5255 |
. 2
|
| 7 | dffv3g 5574 |
. . 3
| |
| 8 | 7 | adantl 277 |
. 2
|
| 9 | funfvex 5595 |
. . . 4
| |
| 10 | 9 | funfni 5377 |
. . 3
|
| 11 | dffv3g 5574 |
. . 3
| |
| 12 | 10, 11 | syl 14 |
. 2
|
| 13 | 6, 8, 12 | 3eqtr4d 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 |
| This theorem is referenced by: fvco 5651 fvco3 5652 ofco 6179 updjudhcoinlf 7184 updjudhcoinrg 7185 updjud 7186 caseinl 7195 caseinr 7196 ctm 7213 enomnilem 7242 enmkvlem 7265 enwomnilem 7273 nninfctlemfo 12394 prdsidlem 13312 gsumwmhm 13363 prdsinvlem 13473 ringidvalg 13756 lidlvalg 14266 rspvalg 14267 |
| Copyright terms: Public domain | W3C validator |