ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvco2 Unicode version

Theorem fvco2 5703
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fvco2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X
)  =  ( F `
 ( G `  X ) ) )

Proof of Theorem fvco2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 imaco 5234 . . . . 5  |-  ( ( F  o.  G )
" { X }
)  =  ( F
" ( G " { X } ) )
2 fnsnfv 5693 . . . . . 6  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  { ( G `  X ) }  =  ( G " { X } ) )
32imaeq2d 5068 . . . . 5  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( F " {
( G `  X
) } )  =  ( F " ( G " { X }
) ) )
41, 3eqtr4id 2281 . . . 4  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) " { X } )  =  ( F " { ( G `  X ) } ) )
54eleq2d 2299 . . 3  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( x  e.  ( ( F  o.  G
) " { X } )  <->  x  e.  ( F " { ( G `  X ) } ) ) )
65iotabidv 5301 . 2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( iota x x  e.  ( ( F  o.  G ) " { X } ) )  =  ( iota x x  e.  ( F " { ( G `  X ) } ) ) )
7 dffv3g 5623 . . 3  |-  ( X  e.  A  ->  (
( F  o.  G
) `  X )  =  ( iota x x  e.  ( ( F  o.  G ) " { X } ) ) )
87adantl 277 . 2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X
)  =  ( iota
x x  e.  ( ( F  o.  G
) " { X } ) ) )
9 funfvex 5644 . . . 4  |-  ( ( Fun  G  /\  X  e.  dom  G )  -> 
( G `  X
)  e.  _V )
109funfni 5423 . . 3  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( G `  X
)  e.  _V )
11 dffv3g 5623 . . 3  |-  ( ( G `  X )  e.  _V  ->  ( F `  ( G `  X ) )  =  ( iota x x  e.  ( F " { ( G `  X ) } ) ) )
1210, 11syl 14 . 2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( F `  ( G `  X )
)  =  ( iota
x x  e.  ( F " { ( G `  X ) } ) ) )
136, 8, 123eqtr4d 2272 1  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X
)  =  ( F `
 ( G `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   "cima 4722    o. ccom 4723   iotacio 5276    Fn wfn 5313   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  fvco  5704  fvco3  5705  ofco  6237  updjudhcoinlf  7247  updjudhcoinrg  7248  updjud  7249  caseinl  7258  caseinr  7259  ctm  7276  enomnilem  7305  enmkvlem  7328  enwomnilem  7336  nninfctlemfo  12561  prdsidlem  13480  gsumwmhm  13531  prdsinvlem  13641  ringidvalg  13924  lidlvalg  14435  rspvalg  14436
  Copyright terms: Public domain W3C validator