| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvco2 | Unicode version | ||
| Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| fvco2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco 5175 |
. . . . 5
| |
| 2 | fnsnfv 5620 |
. . . . . 6
| |
| 3 | 2 | imaeq2d 5009 |
. . . . 5
|
| 4 | 1, 3 | eqtr4id 2248 |
. . . 4
|
| 5 | 4 | eleq2d 2266 |
. . 3
|
| 6 | 5 | iotabidv 5241 |
. 2
|
| 7 | dffv3g 5554 |
. . 3
| |
| 8 | 7 | adantl 277 |
. 2
|
| 9 | funfvex 5575 |
. . . 4
| |
| 10 | 9 | funfni 5358 |
. . 3
|
| 11 | dffv3g 5554 |
. . 3
| |
| 12 | 10, 11 | syl 14 |
. 2
|
| 13 | 6, 8, 12 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 |
| This theorem is referenced by: fvco 5631 fvco3 5632 ofco 6154 updjudhcoinlf 7146 updjudhcoinrg 7147 updjud 7148 caseinl 7157 caseinr 7158 ctm 7175 enomnilem 7204 enmkvlem 7227 enwomnilem 7235 nninfctlemfo 12207 gsumwmhm 13130 ringidvalg 13517 lidlvalg 14027 rspvalg 14028 |
| Copyright terms: Public domain | W3C validator |