ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvco2 Unicode version

Theorem fvco2 5534
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fvco2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X
)  =  ( F `
 ( G `  X ) ) )

Proof of Theorem fvco2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 imaco 5088 . . . . 5  |-  ( ( F  o.  G )
" { X }
)  =  ( F
" ( G " { X } ) )
2 fnsnfv 5524 . . . . . 6  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  { ( G `  X ) }  =  ( G " { X } ) )
32imaeq2d 4925 . . . . 5  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( F " {
( G `  X
) } )  =  ( F " ( G " { X }
) ) )
41, 3eqtr4id 2209 . . . 4  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) " { X } )  =  ( F " { ( G `  X ) } ) )
54eleq2d 2227 . . 3  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( x  e.  ( ( F  o.  G
) " { X } )  <->  x  e.  ( F " { ( G `  X ) } ) ) )
65iotabidv 5153 . 2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( iota x x  e.  ( ( F  o.  G ) " { X } ) )  =  ( iota x x  e.  ( F " { ( G `  X ) } ) ) )
7 dffv3g 5461 . . 3  |-  ( X  e.  A  ->  (
( F  o.  G
) `  X )  =  ( iota x x  e.  ( ( F  o.  G ) " { X } ) ) )
87adantl 275 . 2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X
)  =  ( iota
x x  e.  ( ( F  o.  G
) " { X } ) ) )
9 funfvex 5482 . . . 4  |-  ( ( Fun  G  /\  X  e.  dom  G )  -> 
( G `  X
)  e.  _V )
109funfni 5267 . . 3  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( G `  X
)  e.  _V )
11 dffv3g 5461 . . 3  |-  ( ( G `  X )  e.  _V  ->  ( F `  ( G `  X ) )  =  ( iota x x  e.  ( F " { ( G `  X ) } ) ) )
1210, 11syl 14 . 2  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( F `  ( G `  X )
)  =  ( iota
x x  e.  ( F " { ( G `  X ) } ) ) )
136, 8, 123eqtr4d 2200 1  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X
)  =  ( F `
 ( G `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   _Vcvv 2712   {csn 3560   "cima 4586    o. ccom 4587   iotacio 5130    Fn wfn 5162   ` cfv 5167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-fv 5175
This theorem is referenced by:  fvco  5535  fvco3  5536  ofco  6044  updjudhcoinlf  7014  updjudhcoinrg  7015  updjud  7016  caseinl  7025  caseinr  7026  ctm  7043  enomnilem  7064  enmkvlem  7087  enwomnilem  7095
  Copyright terms: Public domain W3C validator