ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashssdif Unicode version

Theorem fihashssdif 11040
Description: The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.)
Assertion
Ref Expression
fihashssdif  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( A  \  B
) )  =  ( ( `  A )  -  ( `  B )
) )

Proof of Theorem fihashssdif
StepHypRef Expression
1 undiffi 7087 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  A  =  ( B  u.  ( A  \  B ) ) )
21fveq2d 5631 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  A )  =  ( `  ( B  u.  ( A  \  B ) ) ) )
3 simp2 1022 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  e.  Fin )
4 diffifi 7056 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )
5 disjdif 3564 . . . . . 6  |-  ( B  i^i  ( A  \  B ) )  =  (/)
6 hashun 11027 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  \  B )  e.  Fin  /\  ( B  i^i  ( A  \  B ) )  =  (/) )  ->  ( `  ( B  u.  ( A  \  B ) ) )  =  ( ( `  B
)  +  ( `  ( A  \  B ) ) ) )
75, 6mp3an3 1360 . . . . 5  |-  ( ( B  e.  Fin  /\  ( A  \  B )  e.  Fin )  -> 
( `  ( B  u.  ( A  \  B ) ) )  =  ( ( `  B )  +  ( `  ( A  \  B ) ) ) )
83, 4, 7syl2anc 411 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( B  u.  ( A  \  B ) ) )  =  ( ( `  B )  +  ( `  ( A  \  B
) ) ) )
92, 8eqtr2d 2263 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  (
( `  B )  +  ( `  ( A  \  B ) ) )  =  ( `  A
) )
10 hashcl 11003 . . . . . 6  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
1110nn0cnd 9424 . . . . 5  |-  ( A  e.  Fin  ->  ( `  A )  e.  CC )
12113ad2ant1 1042 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  A )  e.  CC )
13 hashcl 11003 . . . . . 6  |-  ( B  e.  Fin  ->  ( `  B )  e.  NN0 )
143, 13syl 14 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  B )  e.  NN0 )
1514nn0cnd 9424 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  B )  e.  CC )
16 hashcl 11003 . . . . . 6  |-  ( ( A  \  B )  e.  Fin  ->  ( `  ( A  \  B
) )  e.  NN0 )
174, 16syl 14 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( A  \  B
) )  e.  NN0 )
1817nn0cnd 9424 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( A  \  B
) )  e.  CC )
1912, 15, 18subaddd 8475 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  (
( ( `  A
)  -  ( `  B
) )  =  ( `  ( A  \  B
) )  <->  ( ( `  B )  +  ( `  ( A  \  B
) ) )  =  ( `  A )
) )
209, 19mpbird 167 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  (
( `  A )  -  ( `  B ) )  =  ( `  ( A  \  B ) ) )
2120eqcomd 2235 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( A  \  B
) )  =  ( ( `  A )  -  ( `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200    \ cdif 3194    u. cun 3195    i^i cin 3196    C_ wss 3197   (/)c0 3491   ` cfv 5318  (class class class)co 6001   Fincfn 6887   CCcc 7997    + caddc 8002    - cmin 8317   NN0cn0 9369  ♯chash 10997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-ihash 10998
This theorem is referenced by:  hashdifsn  11041
  Copyright terms: Public domain W3C validator