ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashssdif Unicode version

Theorem fihashssdif 10280
Description: The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.)
Assertion
Ref Expression
fihashssdif  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( A  \  B
) )  =  ( ( `  A )  -  ( `  B )
) )

Proof of Theorem fihashssdif
StepHypRef Expression
1 undiffi 6689 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  A  =  ( B  u.  ( A  \  B ) ) )
21fveq2d 5322 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  A )  =  ( `  ( B  u.  ( A  \  B ) ) ) )
3 simp2 945 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  e.  Fin )
4 diffifi 6664 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )
5 disjdif 3359 . . . . . 6  |-  ( B  i^i  ( A  \  B ) )  =  (/)
6 hashun 10267 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  \  B )  e.  Fin  /\  ( B  i^i  ( A  \  B ) )  =  (/) )  ->  ( `  ( B  u.  ( A  \  B ) ) )  =  ( ( `  B
)  +  ( `  ( A  \  B ) ) ) )
75, 6mp3an3 1263 . . . . 5  |-  ( ( B  e.  Fin  /\  ( A  \  B )  e.  Fin )  -> 
( `  ( B  u.  ( A  \  B ) ) )  =  ( ( `  B )  +  ( `  ( A  \  B ) ) ) )
83, 4, 7syl2anc 404 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( B  u.  ( A  \  B ) ) )  =  ( ( `  B )  +  ( `  ( A  \  B
) ) ) )
92, 8eqtr2d 2122 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  (
( `  B )  +  ( `  ( A  \  B ) ) )  =  ( `  A
) )
10 hashcl 10243 . . . . . 6  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
1110nn0cnd 8782 . . . . 5  |-  ( A  e.  Fin  ->  ( `  A )  e.  CC )
12113ad2ant1 965 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  A )  e.  CC )
13 hashcl 10243 . . . . . 6  |-  ( B  e.  Fin  ->  ( `  B )  e.  NN0 )
143, 13syl 14 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  B )  e.  NN0 )
1514nn0cnd 8782 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  B )  e.  CC )
16 hashcl 10243 . . . . . 6  |-  ( ( A  \  B )  e.  Fin  ->  ( `  ( A  \  B
) )  e.  NN0 )
174, 16syl 14 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( A  \  B
) )  e.  NN0 )
1817nn0cnd 8782 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( A  \  B
) )  e.  CC )
1912, 15, 18subaddd 7865 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  (
( ( `  A
)  -  ( `  B
) )  =  ( `  ( A  \  B
) )  <->  ( ( `  B )  +  ( `  ( A  \  B
) ) )  =  ( `  A )
) )
209, 19mpbird 166 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  (
( `  A )  -  ( `  B ) )  =  ( `  ( A  \  B ) ) )
2120eqcomd 2094 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( A  \  B
) )  =  ( ( `  A )  -  ( `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 925    = wceq 1290    e. wcel 1439    \ cdif 2997    u. cun 2998    i^i cin 2999    C_ wss 3000   (/)c0 3287   ` cfv 5028  (class class class)co 5666   Fincfn 6511   CCcc 7402    + caddc 7407    - cmin 7707   NN0cn0 8727  ♯chash 10237
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-ltadd 7515
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-inn 8477  df-n0 8728  df-z 8805  df-uz 9074  df-ihash 10238
This theorem is referenced by:  hashdifsn  10281
  Copyright terms: Public domain W3C validator