ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumlessfi Unicode version

Theorem fsumlessfi 11971
Description: A shorter sum of nonnegative terms is no greater than a longer one. (Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon, 12-Oct-2022.)
Hypotheses
Ref Expression
fsumge0.1  |-  ( ph  ->  A  e.  Fin )
fsumge0.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fsumge0.3  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
fsumless.4  |-  ( ph  ->  C  C_  A )
fsumlessfi.c  |-  ( ph  ->  C  e.  Fin )
Assertion
Ref Expression
fsumlessfi  |-  ( ph  -> 
sum_ k  e.  C  B  <_  sum_ k  e.  A  B )
Distinct variable groups:    A, k    C, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsumlessfi
StepHypRef Expression
1 fsumge0.1 . . . . 5  |-  ( ph  ->  A  e.  Fin )
2 fsumlessfi.c . . . . 5  |-  ( ph  ->  C  e.  Fin )
3 fsumless.4 . . . . 5  |-  ( ph  ->  C  C_  A )
4 diffifi 7056 . . . . 5  |-  ( ( A  e.  Fin  /\  C  e.  Fin  /\  C  C_  A )  ->  ( A  \  C )  e. 
Fin )
51, 2, 3, 4syl3anc 1271 . . . 4  |-  ( ph  ->  ( A  \  C
)  e.  Fin )
6 eldifi 3326 . . . . 5  |-  ( k  e.  ( A  \  C )  ->  k  e.  A )
7 fsumge0.2 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
86, 7sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( A  \  C ) )  ->  B  e.  RR )
9 fsumge0.3 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
106, 9sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( A  \  C ) )  ->  0  <_  B )
115, 8, 10fsumge0 11970 . . 3  |-  ( ph  ->  0  <_  sum_ k  e.  ( A  \  C
) B )
123sselda 3224 . . . . . 6  |-  ( (
ph  /\  k  e.  C )  ->  k  e.  A )
1312, 7syldan 282 . . . . 5  |-  ( (
ph  /\  k  e.  C )  ->  B  e.  RR )
142, 13fsumrecl 11912 . . . 4  |-  ( ph  -> 
sum_ k  e.  C  B  e.  RR )
155, 8fsumrecl 11912 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( A  \  C ) B  e.  RR )
1614, 15addge01d 8680 . . 3  |-  ( ph  ->  ( 0  <_  sum_ k  e.  ( A  \  C
) B  <->  sum_ k  e.  C  B  <_  ( sum_ k  e.  C  B  +  sum_ k  e.  ( A  \  C ) B ) ) )
1711, 16mpbid 147 . 2  |-  ( ph  -> 
sum_ k  e.  C  B  <_  ( sum_ k  e.  C  B  +  sum_ k  e.  ( A 
\  C ) B ) )
18 disjdif 3564 . . . 4  |-  ( C  i^i  ( A  \  C ) )  =  (/)
1918a1i 9 . . 3  |-  ( ph  ->  ( C  i^i  ( A  \  C ) )  =  (/) )
20 undiffi 7087 . . . 4  |-  ( ( A  e.  Fin  /\  C  e.  Fin  /\  C  C_  A )  ->  A  =  ( C  u.  ( A  \  C ) ) )
211, 2, 3, 20syl3anc 1271 . . 3  |-  ( ph  ->  A  =  ( C  u.  ( A  \  C ) ) )
227recnd 8175 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2319, 21, 1, 22fsumsplit 11918 . 2  |-  ( ph  -> 
sum_ k  e.  A  B  =  ( sum_ k  e.  C  B  +  sum_ k  e.  ( A  \  C ) B ) )
2417, 23breqtrrd 4111 1  |-  ( ph  -> 
sum_ k  e.  C  B  <_  sum_ k  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    \ cdif 3194    u. cun 3195    i^i cin 3196    C_ wss 3197   (/)c0 3491   class class class wbr 4083  (class class class)co 6001   Fincfn 6887   RRcr 7998   0cc0 7999    + caddc 8002    <_ cle 8182   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-ico 10090  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by:  fsumge1  11972  fsum00  11973  perfectlem2  15674
  Copyright terms: Public domain W3C validator