ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimiva Unicode version

Theorem rexlimiva 2606
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.)
Hypothesis
Ref Expression
rexlimiva.1  |-  ( ( x  e.  A  /\  ph )  ->  ps )
Assertion
Ref Expression
rexlimiva  |-  ( E. x  e.  A  ph  ->  ps )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rexlimiva
StepHypRef Expression
1 rexlimiva.1 . . 3  |-  ( ( x  e.  A  /\  ph )  ->  ps )
21ex 115 . 2  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
32rexlimiv 2605 1  |-  ( E. x  e.  A  ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477  df-rex 2478
This theorem is referenced by:  unon  4543  reg2exmidlema  4566  ssfilem  6931  diffitest  6943  fival  7029  elfi2  7031  fi0  7034  djuss  7129  updjud  7141  enumct  7174  finnum  7243  dmaddpqlem  7437  nqpi  7438  nq0nn  7502  recexprlemm  7684  iswrd  10916  wrdf  10920  rexanuz  11132  r19.2uz  11137  maxleast  11357  fsum2dlemstep  11577  fisumcom2  11581  fprod2dlemstep  11765  fprodcom2fi  11769  0dvds  11954  even2n  12015  m1expe  12040  m1exp1  12042  modprm0  12392  gsumval2  12980  dfgrp2  13099  epttop  14258  neipsm  14322  tgioo  14714  sin0pilem2  14917  pilem3  14918  bj-nn0suc  15456  bj-nn0sucALT  15470  trirec0xor  15535
  Copyright terms: Public domain W3C validator