| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiva | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
| Ref | Expression |
|---|---|
| rexlimiva.1 |
|
| Ref | Expression |
|---|---|
| rexlimiva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimiva.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | rexlimiv 2608 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: unon 4548 reg2exmidlema 4571 ssfilem 6945 diffitest 6957 fival 7045 elfi2 7047 fi0 7050 djuss 7145 updjud 7157 enumct 7190 finnum 7261 dmaddpqlem 7461 nqpi 7462 nq0nn 7526 recexprlemm 7708 iswrd 10954 wrdf 10958 rexanuz 11170 r19.2uz 11175 maxleast 11395 fsum2dlemstep 11616 fisumcom2 11620 fprod2dlemstep 11804 fprodcom2fi 11808 0dvds 11993 even2n 12056 m1expe 12081 m1exp1 12083 modprm0 12448 gsumval2 13099 dfgrp2 13229 epttop 14410 neipsm 14474 tgioo 14874 sin0pilem2 15102 pilem3 15103 perfect 15321 bj-nn0suc 15694 bj-nn0sucALT 15708 trirec0xor 15776 |
| Copyright terms: Public domain | W3C validator |