| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiva | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
| Ref | Expression |
|---|---|
| rexlimiva.1 |
|
| Ref | Expression |
|---|---|
| rexlimiva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimiva.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | rexlimiv 2617 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: unon 4560 reg2exmidlema 4583 ssfilem 6974 diffitest 6986 fival 7074 elfi2 7076 fi0 7079 djuss 7174 updjud 7186 enumct 7219 finnum 7292 dmaddpqlem 7492 nqpi 7493 nq0nn 7557 recexprlemm 7739 iswrd 10998 wrdf 11002 rexanuz 11332 r19.2uz 11337 maxleast 11557 fsum2dlemstep 11778 fisumcom2 11782 fprod2dlemstep 11966 fprodcom2fi 11970 0dvds 12155 even2n 12218 m1expe 12243 m1exp1 12245 modprm0 12610 gsumval2 13262 dfgrp2 13392 epttop 14595 neipsm 14659 tgioo 15059 sin0pilem2 15287 pilem3 15288 perfect 15506 bj-nn0suc 15937 bj-nn0sucALT 15951 trirec0xor 16021 |
| Copyright terms: Public domain | W3C validator |