| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiva | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.) |
| Ref | Expression |
|---|---|
| rexlimiva.1 |
|
| Ref | Expression |
|---|---|
| rexlimiva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimiva.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | rexlimiv 2608 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: unon 4547 reg2exmidlema 4570 ssfilem 6936 diffitest 6948 fival 7036 elfi2 7038 fi0 7041 djuss 7136 updjud 7148 enumct 7181 finnum 7250 dmaddpqlem 7444 nqpi 7445 nq0nn 7509 recexprlemm 7691 iswrd 10937 wrdf 10941 rexanuz 11153 r19.2uz 11158 maxleast 11378 fsum2dlemstep 11599 fisumcom2 11603 fprod2dlemstep 11787 fprodcom2fi 11791 0dvds 11976 even2n 12039 m1expe 12064 m1exp1 12066 modprm0 12423 gsumval2 13040 dfgrp2 13159 epttop 14326 neipsm 14390 tgioo 14790 sin0pilem2 15018 pilem3 15019 perfect 15237 bj-nn0suc 15610 bj-nn0sucALT 15624 trirec0xor 15689 |
| Copyright terms: Public domain | W3C validator |