ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclnq Unicode version

Theorem mulclnq 7132
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.)
Assertion
Ref Expression
mulclnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  e.  Q. )

Proof of Theorem mulclnq
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7104 . . 3  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 oveq1 5735 . . . 4  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. x ,  y >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  ( A  .Q  [ <. z ,  w >. ]  ~Q  ) )
32eleq1d 2183 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. x ,  y >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  )  <->  ( A  .Q  [ <. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  ) ) )
4 oveq2 5736 . . . 4  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( A  .Q  [ <. z ,  w >. ]  ~Q  )  =  ( A  .Q  B ) )
54eleq1d 2183 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( A  .Q  [
<. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  )  <->  ( A  .Q  B )  e.  ( ( N.  X.  N. ) /.  ~Q  ) ) )
6 mulpipqqs 7129 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( y  .N  w ) >. ]  ~Q  )
7 mulclpi 7084 . . . . . . 7  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  e.  N. )
8 mulclpi 7084 . . . . . . 7  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
97, 8anim12i 334 . . . . . 6  |-  ( ( ( x  e.  N.  /\  z  e.  N. )  /\  ( y  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  z )  e.  N.  /\  (
y  .N  w )  e.  N. ) )
109an4s 560 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  z )  e.  N.  /\  (
y  .N  w )  e.  N. ) )
11 opelxpi 4531 . . . . 5  |-  ( ( ( x  .N  z
)  e.  N.  /\  ( y  .N  w
)  e.  N. )  -> 
<. ( x  .N  z
) ,  ( y  .N  w ) >.  e.  ( N.  X.  N. ) )
12 enqex 7116 . . . . . 6  |-  ~Q  e.  _V
1312ecelqsi 6437 . . . . 5  |-  ( <.
( x  .N  z
) ,  ( y  .N  w ) >.  e.  ( N.  X.  N. )  ->  [ <. (
x  .N  z ) ,  ( y  .N  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
1410, 11, 133syl 17 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  [ <. (
x  .N  z ) ,  ( y  .N  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
156, 14eqeltrd 2191 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
161, 3, 5, 152ecoptocl 6471 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
1716, 1syl6eleqr 2208 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  e.  Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   <.cop 3496    X. cxp 4497  (class class class)co 5728   [cec 6381   /.cqs 6382   N.cnpi 7028    .N cmi 7030    ~Q ceq 7035   Q.cnq 7036    .Q cmq 7039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-mi 7062  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-mqqs 7106
This theorem is referenced by:  halfnqq  7166  prarloclemarch  7174  prarloclemarch2  7175  ltrnqg  7176  prarloclemlt  7249  prarloclemlo  7250  prarloclemcalc  7258  addnqprllem  7283  addnqprulem  7284  addnqprl  7285  addnqpru  7286  mpvlu  7295  dmmp  7297  appdivnq  7319  prmuloclemcalc  7321  prmuloc  7322  mulnqprl  7324  mulnqpru  7325  mullocprlem  7326  mullocpr  7327  mulclpr  7328  mulnqprlemrl  7329  mulnqprlemru  7330  mulnqprlemfl  7331  mulnqprlemfu  7332  mulnqpr  7333  mulassprg  7337  distrlem1prl  7338  distrlem1pru  7339  distrlem4prl  7340  distrlem4pru  7341  distrlem5prl  7342  distrlem5pru  7343  1idprl  7346  1idpru  7347  recexprlem1ssl  7389  recexprlem1ssu  7390  recexprlemss1l  7391  recexprlemss1u  7392
  Copyright terms: Public domain W3C validator