| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclnq | Unicode version | ||
| Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulclnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7432 |
. . 3
| |
| 2 | oveq1 5932 |
. . . 4
| |
| 3 | 2 | eleq1d 2265 |
. . 3
|
| 4 | oveq2 5933 |
. . . 4
| |
| 5 | 4 | eleq1d 2265 |
. . 3
|
| 6 | mulpipqqs 7457 |
. . . 4
| |
| 7 | mulclpi 7412 |
. . . . . . 7
| |
| 8 | mulclpi 7412 |
. . . . . . 7
| |
| 9 | 7, 8 | anim12i 338 |
. . . . . 6
|
| 10 | 9 | an4s 588 |
. . . . 5
|
| 11 | opelxpi 4696 |
. . . . 5
| |
| 12 | enqex 7444 |
. . . . . 6
| |
| 13 | 12 | ecelqsi 6657 |
. . . . 5
|
| 14 | 10, 11, 13 | 3syl 17 |
. . . 4
|
| 15 | 6, 14 | eqeltrd 2273 |
. . 3
|
| 16 | 1, 3, 5, 15 | 2ecoptocl 6691 |
. 2
|
| 17 | 16, 1 | eleqtrrdi 2290 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-mi 7390 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-mqqs 7434 |
| This theorem is referenced by: halfnqq 7494 prarloclemarch 7502 prarloclemarch2 7503 ltrnqg 7504 prarloclemlt 7577 prarloclemlo 7578 prarloclemcalc 7586 addnqprllem 7611 addnqprulem 7612 addnqprl 7613 addnqpru 7614 mpvlu 7623 dmmp 7625 appdivnq 7647 prmuloclemcalc 7649 prmuloc 7650 mulnqprl 7652 mulnqpru 7653 mullocprlem 7654 mullocpr 7655 mulclpr 7656 mulnqprlemrl 7657 mulnqprlemru 7658 mulnqprlemfl 7659 mulnqprlemfu 7660 mulnqpr 7661 mulassprg 7665 distrlem1prl 7666 distrlem1pru 7667 distrlem4prl 7668 distrlem4pru 7669 distrlem5prl 7670 distrlem5pru 7671 1idprl 7674 1idpru 7675 recexprlem1ssl 7717 recexprlem1ssu 7718 recexprlemss1l 7719 recexprlemss1u 7720 |
| Copyright terms: Public domain | W3C validator |