ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmco Unicode version

Theorem dmco 5210
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
Assertion
Ref Expression
dmco  |-  dom  ( A  o.  B )  =  ( `' B " dom  A )

Proof of Theorem dmco
StepHypRef Expression
1 dfdm4 4889 . 2  |-  dom  ( A  o.  B )  =  ran  `' ( A  o.  B )
2 cnvco 4881 . . 3  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
32rneqi 4925 . 2  |-  ran  `' ( A  o.  B
)  =  ran  ( `' B  o.  `' A )
4 rnco2 5209 . . 3  |-  ran  ( `' B  o.  `' A )  =  ( `' B " ran  `' A )
5 dfdm4 4889 . . . 4  |-  dom  A  =  ran  `' A
65imaeq2i 5039 . . 3  |-  ( `' B " dom  A
)  =  ( `' B " ran  `' A )
74, 6eqtr4i 2231 . 2  |-  ran  ( `' B  o.  `' A )  =  ( `' B " dom  A
)
81, 3, 73eqtri 2232 1  |-  dom  ( A  o.  B )  =  ( `' B " dom  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   `'ccnv 4692   dom cdm 4693   ran crn 4694   "cima 4696    o. ccom 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by:  casedm  7214  caseinl  7219  caseinr  7220  djudm  7233
  Copyright terms: Public domain W3C validator