ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmco Unicode version

Theorem dmco 5237
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
Assertion
Ref Expression
dmco  |-  dom  ( A  o.  B )  =  ( `' B " dom  A )

Proof of Theorem dmco
StepHypRef Expression
1 dfdm4 4915 . 2  |-  dom  ( A  o.  B )  =  ran  `' ( A  o.  B )
2 cnvco 4907 . . 3  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
32rneqi 4952 . 2  |-  ran  `' ( A  o.  B
)  =  ran  ( `' B  o.  `' A )
4 rnco2 5236 . . 3  |-  ran  ( `' B  o.  `' A )  =  ( `' B " ran  `' A )
5 dfdm4 4915 . . . 4  |-  dom  A  =  ran  `' A
65imaeq2i 5066 . . 3  |-  ( `' B " dom  A
)  =  ( `' B " ran  `' A )
74, 6eqtr4i 2253 . 2  |-  ran  ( `' B  o.  `' A )  =  ( `' B " dom  A
)
81, 3, 73eqtri 2254 1  |-  dom  ( A  o.  B )  =  ( `' B " dom  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1395   `'ccnv 4718   dom cdm 4719   ran crn 4720   "cima 4722    o. ccom 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  casedm  7253  caseinl  7258  caseinr  7259  djudm  7272
  Copyright terms: Public domain W3C validator