ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmco Unicode version

Theorem dmco 5119
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
Assertion
Ref Expression
dmco  |-  dom  ( A  o.  B )  =  ( `' B " dom  A )

Proof of Theorem dmco
StepHypRef Expression
1 dfdm4 4803 . 2  |-  dom  ( A  o.  B )  =  ran  `' ( A  o.  B )
2 cnvco 4796 . . 3  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
32rneqi 4839 . 2  |-  ran  `' ( A  o.  B
)  =  ran  ( `' B  o.  `' A )
4 rnco2 5118 . . 3  |-  ran  ( `' B  o.  `' A )  =  ( `' B " ran  `' A )
5 dfdm4 4803 . . . 4  |-  dom  A  =  ran  `' A
65imaeq2i 4951 . . 3  |-  ( `' B " dom  A
)  =  ( `' B " ran  `' A )
74, 6eqtr4i 2194 . 2  |-  ran  ( `' B  o.  `' A )  =  ( `' B " dom  A
)
81, 3, 73eqtri 2195 1  |-  dom  ( A  o.  B )  =  ( `' B " dom  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1348   `'ccnv 4610   dom cdm 4611   ran crn 4612   "cima 4614    o. ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  casedm  7063  caseinl  7068  caseinr  7069  djudm  7082
  Copyright terms: Public domain W3C validator