ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmco Unicode version

Theorem dmco 5155
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
Assertion
Ref Expression
dmco  |-  dom  ( A  o.  B )  =  ( `' B " dom  A )

Proof of Theorem dmco
StepHypRef Expression
1 dfdm4 4837 . 2  |-  dom  ( A  o.  B )  =  ran  `' ( A  o.  B )
2 cnvco 4830 . . 3  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
32rneqi 4873 . 2  |-  ran  `' ( A  o.  B
)  =  ran  ( `' B  o.  `' A )
4 rnco2 5154 . . 3  |-  ran  ( `' B  o.  `' A )  =  ( `' B " ran  `' A )
5 dfdm4 4837 . . . 4  |-  dom  A  =  ran  `' A
65imaeq2i 4986 . . 3  |-  ( `' B " dom  A
)  =  ( `' B " ran  `' A )
74, 6eqtr4i 2213 . 2  |-  ran  ( `' B  o.  `' A )  =  ( `' B " dom  A
)
81, 3, 73eqtri 2214 1  |-  dom  ( A  o.  B )  =  ( `' B " dom  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   `'ccnv 4643   dom cdm 4644   ran crn 4645   "cima 4647    o. ccom 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4650  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657
This theorem is referenced by:  casedm  7116  caseinl  7121  caseinr  7122  djudm  7135
  Copyright terms: Public domain W3C validator