ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casedm Unicode version

Theorem casedm 7063
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important):  |-  ran case ( F ,  G )  =  ( ran  F  u.  ran  G ). (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
casedm  |-  dom case ( F ,  G )  =  ( dom  F dom 
G )

Proof of Theorem casedm
StepHypRef Expression
1 df-case 7061 . . 3  |- case ( F ,  G )  =  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
)
21dmeqi 4812 . 2  |-  dom case ( F ,  G )  =  dom  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) )
3 dmun 4818 . 2  |-  dom  (
( F  o.  `'inl )  u.  ( G  o.  `'inr ) )  =  ( dom  ( F  o.  `'inl )  u.  dom  ( G  o.  `'inr ) )
4 dmco 5119 . . . . 5  |-  dom  ( F  o.  `'inl )  =  ( `' `'inl " dom  F )
5 imacnvcnv 5075 . . . . 5  |-  ( `' `'inl " dom  F )  =  (inl " dom  F )
6 df-ima 4624 . . . . 5  |-  (inl " dom  F )  =  ran  (inl  |`  dom  F )
74, 5, 63eqtri 2195 . . . 4  |-  dom  ( F  o.  `'inl )  =  ran  (inl  |`  dom  F
)
8 dmco 5119 . . . . 5  |-  dom  ( G  o.  `'inr )  =  ( `' `'inr " dom  G )
9 imacnvcnv 5075 . . . . 5  |-  ( `' `'inr " dom  G )  =  (inr " dom  G )
10 df-ima 4624 . . . . 5  |-  (inr " dom  G )  =  ran  (inr  |`  dom  G )
118, 9, 103eqtri 2195 . . . 4  |-  dom  ( G  o.  `'inr )  =  ran  (inr  |`  dom  G
)
127, 11uneq12i 3279 . . 3  |-  ( dom  ( F  o.  `'inl )  u.  dom  ( G  o.  `'inr ) )  =  ( ran  (inl  |` 
dom  F )  u. 
ran  (inr  |`  dom  G
) )
13 djuunr 7043 . . 3  |-  ( ran  (inl  |`  dom  F )  u.  ran  (inr  |`  dom  G
) )  =  ( dom  F dom  G )
1412, 13eqtri 2191 . 2  |-  ( dom  ( F  o.  `'inl )  u.  dom  ( G  o.  `'inr ) )  =  ( dom  F dom 
G )
152, 3, 143eqtri 2195 1  |-  dom case ( F ,  G )  =  ( dom  F dom 
G )
Colors of variables: wff set class
Syntax hints:    = wceq 1348    u. cun 3119   `'ccnv 4610   dom cdm 4611   ran crn 4612    |` cres 4613   "cima 4614    o. ccom 4615   ⊔ cdju 7014  inlcinl 7022  inrcinr 7023  casecdjucase 7060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by:  casef  7065
  Copyright terms: Public domain W3C validator