ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casedm Unicode version

Theorem casedm 7145
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important):  |-  ran case ( F ,  G )  =  ( ran  F  u.  ran  G ). (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
casedm  |-  dom case ( F ,  G )  =  ( dom  F dom 
G )

Proof of Theorem casedm
StepHypRef Expression
1 df-case 7143 . . 3  |- case ( F ,  G )  =  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
)
21dmeqi 4863 . 2  |-  dom case ( F ,  G )  =  dom  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) )
3 dmun 4869 . 2  |-  dom  (
( F  o.  `'inl )  u.  ( G  o.  `'inr ) )  =  ( dom  ( F  o.  `'inl )  u.  dom  ( G  o.  `'inr ) )
4 dmco 5174 . . . . 5  |-  dom  ( F  o.  `'inl )  =  ( `' `'inl " dom  F )
5 imacnvcnv 5130 . . . . 5  |-  ( `' `'inl " dom  F )  =  (inl " dom  F )
6 df-ima 4672 . . . . 5  |-  (inl " dom  F )  =  ran  (inl  |`  dom  F )
74, 5, 63eqtri 2218 . . . 4  |-  dom  ( F  o.  `'inl )  =  ran  (inl  |`  dom  F
)
8 dmco 5174 . . . . 5  |-  dom  ( G  o.  `'inr )  =  ( `' `'inr " dom  G )
9 imacnvcnv 5130 . . . . 5  |-  ( `' `'inr " dom  G )  =  (inr " dom  G )
10 df-ima 4672 . . . . 5  |-  (inr " dom  G )  =  ran  (inr  |`  dom  G )
118, 9, 103eqtri 2218 . . . 4  |-  dom  ( G  o.  `'inr )  =  ran  (inr  |`  dom  G
)
127, 11uneq12i 3311 . . 3  |-  ( dom  ( F  o.  `'inl )  u.  dom  ( G  o.  `'inr ) )  =  ( ran  (inl  |` 
dom  F )  u. 
ran  (inr  |`  dom  G
) )
13 djuunr 7125 . . 3  |-  ( ran  (inl  |`  dom  F )  u.  ran  (inr  |`  dom  G
) )  =  ( dom  F dom  G )
1412, 13eqtri 2214 . 2  |-  ( dom  ( F  o.  `'inl )  u.  dom  ( G  o.  `'inr ) )  =  ( dom  F dom 
G )
152, 3, 143eqtri 2218 1  |-  dom case ( F ,  G )  =  ( dom  F dom 
G )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3151   `'ccnv 4658   dom cdm 4659   ran crn 4660    |` cres 4661   "cima 4662    o. ccom 4663   ⊔ cdju 7096  inlcinl 7104  inrcinr 7105  casecdjucase 7142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107  df-case 7143
This theorem is referenced by:  casef  7147
  Copyright terms: Public domain W3C validator