ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casedm Unicode version

Theorem casedm 7051
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important):  |-  ran case ( F ,  G )  =  ( ran  F  u.  ran  G ). (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
casedm  |-  dom case ( F ,  G )  =  ( dom  F dom 
G )

Proof of Theorem casedm
StepHypRef Expression
1 df-case 7049 . . 3  |- case ( F ,  G )  =  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
)
21dmeqi 4805 . 2  |-  dom case ( F ,  G )  =  dom  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) )
3 dmun 4811 . 2  |-  dom  (
( F  o.  `'inl )  u.  ( G  o.  `'inr ) )  =  ( dom  ( F  o.  `'inl )  u.  dom  ( G  o.  `'inr ) )
4 dmco 5112 . . . . 5  |-  dom  ( F  o.  `'inl )  =  ( `' `'inl " dom  F )
5 imacnvcnv 5068 . . . . 5  |-  ( `' `'inl " dom  F )  =  (inl " dom  F )
6 df-ima 4617 . . . . 5  |-  (inl " dom  F )  =  ran  (inl  |`  dom  F )
74, 5, 63eqtri 2190 . . . 4  |-  dom  ( F  o.  `'inl )  =  ran  (inl  |`  dom  F
)
8 dmco 5112 . . . . 5  |-  dom  ( G  o.  `'inr )  =  ( `' `'inr " dom  G )
9 imacnvcnv 5068 . . . . 5  |-  ( `' `'inr " dom  G )  =  (inr " dom  G )
10 df-ima 4617 . . . . 5  |-  (inr " dom  G )  =  ran  (inr  |`  dom  G )
118, 9, 103eqtri 2190 . . . 4  |-  dom  ( G  o.  `'inr )  =  ran  (inr  |`  dom  G
)
127, 11uneq12i 3274 . . 3  |-  ( dom  ( F  o.  `'inl )  u.  dom  ( G  o.  `'inr ) )  =  ( ran  (inl  |` 
dom  F )  u. 
ran  (inr  |`  dom  G
) )
13 djuunr 7031 . . 3  |-  ( ran  (inl  |`  dom  F )  u.  ran  (inr  |`  dom  G
) )  =  ( dom  F dom  G )
1412, 13eqtri 2186 . 2  |-  ( dom  ( F  o.  `'inl )  u.  dom  ( G  o.  `'inr ) )  =  ( dom  F dom 
G )
152, 3, 143eqtri 2190 1  |-  dom case ( F ,  G )  =  ( dom  F dom 
G )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    u. cun 3114   `'ccnv 4603   dom cdm 4604   ran crn 4605    |` cres 4606   "cima 4607    o. ccom 4608   ⊔ cdju 7002  inlcinl 7010  inrcinr 7011  casecdjucase 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049
This theorem is referenced by:  casef  7053
  Copyright terms: Public domain W3C validator