Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmco | GIF version |
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
dmco | ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 4803 | . 2 ⊢ dom (𝐴 ∘ 𝐵) = ran ◡(𝐴 ∘ 𝐵) | |
2 | cnvco 4796 | . . 3 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
3 | 2 | rneqi 4839 | . 2 ⊢ ran ◡(𝐴 ∘ 𝐵) = ran (◡𝐵 ∘ ◡𝐴) |
4 | rnco2 5118 | . . 3 ⊢ ran (◡𝐵 ∘ ◡𝐴) = (◡𝐵 “ ran ◡𝐴) | |
5 | dfdm4 4803 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | 5 | imaeq2i 4951 | . . 3 ⊢ (◡𝐵 “ dom 𝐴) = (◡𝐵 “ ran ◡𝐴) |
7 | 4, 6 | eqtr4i 2194 | . 2 ⊢ ran (◡𝐵 ∘ ◡𝐴) = (◡𝐵 “ dom 𝐴) |
8 | 1, 3, 7 | 3eqtri 2195 | 1 ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ◡ccnv 4610 dom cdm 4611 ran crn 4612 “ cima 4614 ∘ ccom 4615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: casedm 7063 caseinl 7068 caseinr 7069 djudm 7082 |
Copyright terms: Public domain | W3C validator |