Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmco | GIF version |
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
dmco | ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 4796 | . 2 ⊢ dom (𝐴 ∘ 𝐵) = ran ◡(𝐴 ∘ 𝐵) | |
2 | cnvco 4789 | . . 3 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
3 | 2 | rneqi 4832 | . 2 ⊢ ran ◡(𝐴 ∘ 𝐵) = ran (◡𝐵 ∘ ◡𝐴) |
4 | rnco2 5111 | . . 3 ⊢ ran (◡𝐵 ∘ ◡𝐴) = (◡𝐵 “ ran ◡𝐴) | |
5 | dfdm4 4796 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | 5 | imaeq2i 4944 | . . 3 ⊢ (◡𝐵 “ dom 𝐴) = (◡𝐵 “ ran ◡𝐴) |
7 | 4, 6 | eqtr4i 2189 | . 2 ⊢ ran (◡𝐵 ∘ ◡𝐴) = (◡𝐵 “ dom 𝐴) |
8 | 1, 3, 7 | 3eqtri 2190 | 1 ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ◡ccnv 4603 dom cdm 4604 ran crn 4605 “ cima 4607 ∘ ccom 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: casedm 7051 caseinl 7056 caseinr 7057 djudm 7070 |
Copyright terms: Public domain | W3C validator |