![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmco | GIF version |
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
dmco | ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 4855 | . 2 ⊢ dom (𝐴 ∘ 𝐵) = ran ◡(𝐴 ∘ 𝐵) | |
2 | cnvco 4848 | . . 3 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
3 | 2 | rneqi 4891 | . 2 ⊢ ran ◡(𝐴 ∘ 𝐵) = ran (◡𝐵 ∘ ◡𝐴) |
4 | rnco2 5174 | . . 3 ⊢ ran (◡𝐵 ∘ ◡𝐴) = (◡𝐵 “ ran ◡𝐴) | |
5 | dfdm4 4855 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | 5 | imaeq2i 5004 | . . 3 ⊢ (◡𝐵 “ dom 𝐴) = (◡𝐵 “ ran ◡𝐴) |
7 | 4, 6 | eqtr4i 2217 | . 2 ⊢ ran (◡𝐵 ∘ ◡𝐴) = (◡𝐵 “ dom 𝐴) |
8 | 1, 3, 7 | 3eqtri 2218 | 1 ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ◡ccnv 4659 dom cdm 4660 ran crn 4661 “ cima 4663 ∘ ccom 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: casedm 7147 caseinl 7152 caseinr 7153 djudm 7166 |
Copyright terms: Public domain | W3C validator |