ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmco GIF version

Theorem dmco 5112
Description: The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
Assertion
Ref Expression
dmco dom (𝐴𝐵) = (𝐵 “ dom 𝐴)

Proof of Theorem dmco
StepHypRef Expression
1 dfdm4 4796 . 2 dom (𝐴𝐵) = ran (𝐴𝐵)
2 cnvco 4789 . . 3 (𝐴𝐵) = (𝐵𝐴)
32rneqi 4832 . 2 ran (𝐴𝐵) = ran (𝐵𝐴)
4 rnco2 5111 . . 3 ran (𝐵𝐴) = (𝐵 “ ran 𝐴)
5 dfdm4 4796 . . . 4 dom 𝐴 = ran 𝐴
65imaeq2i 4944 . . 3 (𝐵 “ dom 𝐴) = (𝐵 “ ran 𝐴)
74, 6eqtr4i 2189 . 2 ran (𝐵𝐴) = (𝐵 “ dom 𝐴)
81, 3, 73eqtri 2190 1 dom (𝐴𝐵) = (𝐵 “ dom 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  ccnv 4603  dom cdm 4604  ran crn 4605  cima 4607  ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  casedm  7051  caseinl  7056  caseinr  7057  djudm  7070
  Copyright terms: Public domain W3C validator