ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminss Unicode version

Theorem dminss 4909
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising." (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
dminss  |-  ( dom 
R  i^i  A )  C_  ( `' R "
( R " A
) )

Proof of Theorem dminss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.8a 1550 . . . . . . 7  |-  ( ( x  e.  A  /\  x R y )  ->  E. x ( x  e.  A  /\  x R y ) )
21ancoms 266 . . . . . 6  |-  ( ( x R y  /\  x  e.  A )  ->  E. x ( x  e.  A  /\  x R y ) )
3 vex 2658 . . . . . . 7  |-  y  e. 
_V
43elima2 4843 . . . . . 6  |-  ( y  e.  ( R " A )  <->  E. x
( x  e.  A  /\  x R y ) )
52, 4sylibr 133 . . . . 5  |-  ( ( x R y  /\  x  e.  A )  ->  y  e.  ( R
" A ) )
6 simpl 108 . . . . . 6  |-  ( ( x R y  /\  x  e.  A )  ->  x R y )
7 vex 2658 . . . . . . 7  |-  x  e. 
_V
83, 7brcnv 4680 . . . . . 6  |-  ( y `' R x  <->  x R
y )
96, 8sylibr 133 . . . . 5  |-  ( ( x R y  /\  x  e.  A )  ->  y `' R x )
105, 9jca 302 . . . 4  |-  ( ( x R y  /\  x  e.  A )  ->  ( y  e.  ( R " A )  /\  y `' R x ) )
1110eximi 1560 . . 3  |-  ( E. y ( x R y  /\  x  e.  A )  ->  E. y
( y  e.  ( R " A )  /\  y `' R x ) )
127eldm 4694 . . . . 5  |-  ( x  e.  dom  R  <->  E. y  x R y )
1312anbi1i 451 . . . 4  |-  ( ( x  e.  dom  R  /\  x  e.  A
)  <->  ( E. y  x R y  /\  x  e.  A ) )
14 elin 3223 . . . 4  |-  ( x  e.  ( dom  R  i^i  A )  <->  ( x  e.  dom  R  /\  x  e.  A ) )
15 19.41v 1854 . . . 4  |-  ( E. y ( x R y  /\  x  e.  A )  <->  ( E. y  x R y  /\  x  e.  A )
)
1613, 14, 153bitr4i 211 . . 3  |-  ( x  e.  ( dom  R  i^i  A )  <->  E. y
( x R y  /\  x  e.  A
) )
177elima2 4843 . . 3  |-  ( x  e.  ( `' R " ( R " A
) )  <->  E. y
( y  e.  ( R " A )  /\  y `' R x ) )
1811, 16, 173imtr4i 200 . 2  |-  ( x  e.  ( dom  R  i^i  A )  ->  x  e.  ( `' R "
( R " A
) ) )
1918ssriv 3065 1  |-  ( dom 
R  i^i  A )  C_  ( `' R "
( R " A
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1449    e. wcel 1461    i^i cin 3034    C_ wss 3035   class class class wbr 3893   `'ccnv 4496   dom cdm 4497   "cima 4500
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-xp 4503  df-cnv 4505  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator