Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dminss | GIF version |
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004.) |
Ref | Expression |
---|---|
dminss | ⊢ (dom 𝑅 ∩ 𝐴) ⊆ (◡𝑅 “ (𝑅 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1583 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) | |
2 | 1 | ancoms 266 | . . . . . 6 ⊢ ((𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) |
3 | vex 2733 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | elima2 4959 | . . . . . 6 ⊢ (𝑦 ∈ (𝑅 “ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) |
5 | 2, 4 | sylibr 133 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ (𝑅 “ 𝐴)) |
6 | simpl 108 | . . . . . 6 ⊢ ((𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥𝑅𝑦) | |
7 | vex 2733 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 3, 7 | brcnv 4794 | . . . . . 6 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
9 | 6, 8 | sylibr 133 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦◡𝑅𝑥) |
10 | 5, 9 | jca 304 | . . . 4 ⊢ ((𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝑅 “ 𝐴) ∧ 𝑦◡𝑅𝑥)) |
11 | 10 | eximi 1593 | . . 3 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → ∃𝑦(𝑦 ∈ (𝑅 “ 𝐴) ∧ 𝑦◡𝑅𝑥)) |
12 | 7 | eldm 4808 | . . . . 5 ⊢ (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦) |
13 | 12 | anbi1i 455 | . . . 4 ⊢ ((𝑥 ∈ dom 𝑅 ∧ 𝑥 ∈ 𝐴) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴)) |
14 | elin 3310 | . . . 4 ⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↔ (𝑥 ∈ dom 𝑅 ∧ 𝑥 ∈ 𝐴)) | |
15 | 19.41v 1895 | . . . 4 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴)) | |
16 | 13, 14, 15 | 3bitr4i 211 | . . 3 ⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↔ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴)) |
17 | 7 | elima2 4959 | . . 3 ⊢ (𝑥 ∈ (◡𝑅 “ (𝑅 “ 𝐴)) ↔ ∃𝑦(𝑦 ∈ (𝑅 “ 𝐴) ∧ 𝑦◡𝑅𝑥)) |
18 | 11, 16, 17 | 3imtr4i 200 | . 2 ⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) → 𝑥 ∈ (◡𝑅 “ (𝑅 “ 𝐴))) |
19 | 18 | ssriv 3151 | 1 ⊢ (dom 𝑅 ∩ 𝐴) ⊆ (◡𝑅 “ (𝑅 “ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∃wex 1485 ∈ wcel 2141 ∩ cin 3120 ⊆ wss 3121 class class class wbr 3989 ◡ccnv 4610 dom cdm 4611 “ cima 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |