![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dminss | GIF version |
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004.) |
Ref | Expression |
---|---|
dminss | ⊢ (dom 𝑅 ∩ 𝐴) ⊆ (◡𝑅 “ (𝑅 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1601 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) | |
2 | 1 | ancoms 268 | . . . . . 6 ⊢ ((𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) |
3 | vex 2755 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | elima2 4994 | . . . . . 6 ⊢ (𝑦 ∈ (𝑅 “ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) |
5 | 2, 4 | sylibr 134 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ (𝑅 “ 𝐴)) |
6 | simpl 109 | . . . . . 6 ⊢ ((𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥𝑅𝑦) | |
7 | vex 2755 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 3, 7 | brcnv 4828 | . . . . . 6 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
9 | 6, 8 | sylibr 134 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦◡𝑅𝑥) |
10 | 5, 9 | jca 306 | . . . 4 ⊢ ((𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝑅 “ 𝐴) ∧ 𝑦◡𝑅𝑥)) |
11 | 10 | eximi 1611 | . . 3 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) → ∃𝑦(𝑦 ∈ (𝑅 “ 𝐴) ∧ 𝑦◡𝑅𝑥)) |
12 | 7 | eldm 4842 | . . . . 5 ⊢ (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦) |
13 | 12 | anbi1i 458 | . . . 4 ⊢ ((𝑥 ∈ dom 𝑅 ∧ 𝑥 ∈ 𝐴) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴)) |
14 | elin 3333 | . . . 4 ⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↔ (𝑥 ∈ dom 𝑅 ∧ 𝑥 ∈ 𝐴)) | |
15 | 19.41v 1914 | . . . 4 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴)) | |
16 | 13, 14, 15 | 3bitr4i 212 | . . 3 ⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↔ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑥 ∈ 𝐴)) |
17 | 7 | elima2 4994 | . . 3 ⊢ (𝑥 ∈ (◡𝑅 “ (𝑅 “ 𝐴)) ↔ ∃𝑦(𝑦 ∈ (𝑅 “ 𝐴) ∧ 𝑦◡𝑅𝑥)) |
18 | 11, 16, 17 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) → 𝑥 ∈ (◡𝑅 “ (𝑅 “ 𝐴))) |
19 | 18 | ssriv 3174 | 1 ⊢ (dom 𝑅 ∩ 𝐴) ⊆ (◡𝑅 “ (𝑅 “ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃wex 1503 ∈ wcel 2160 ∩ cin 3143 ⊆ wss 3144 class class class wbr 4018 ◡ccnv 4643 dom cdm 4644 “ cima 4647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-xp 4650 df-cnv 4652 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |