ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminss GIF version

Theorem dminss 5142
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
dminss (dom 𝑅𝐴) ⊆ (𝑅 “ (𝑅𝐴))

Proof of Theorem dminss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.8a 1636 . . . . . . 7 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
21ancoms 268 . . . . . 6 ((𝑥𝑅𝑦𝑥𝐴) → ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
3 vex 2802 . . . . . . 7 𝑦 ∈ V
43elima2 5073 . . . . . 6 (𝑦 ∈ (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
52, 4sylibr 134 . . . . 5 ((𝑥𝑅𝑦𝑥𝐴) → 𝑦 ∈ (𝑅𝐴))
6 simpl 109 . . . . . 6 ((𝑥𝑅𝑦𝑥𝐴) → 𝑥𝑅𝑦)
7 vex 2802 . . . . . . 7 𝑥 ∈ V
83, 7brcnv 4904 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
96, 8sylibr 134 . . . . 5 ((𝑥𝑅𝑦𝑥𝐴) → 𝑦𝑅𝑥)
105, 9jca 306 . . . 4 ((𝑥𝑅𝑦𝑥𝐴) → (𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
1110eximi 1646 . . 3 (∃𝑦(𝑥𝑅𝑦𝑥𝐴) → ∃𝑦(𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
127eldm 4919 . . . . 5 (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦)
1312anbi1i 458 . . . 4 ((𝑥 ∈ dom 𝑅𝑥𝐴) ↔ (∃𝑦 𝑥𝑅𝑦𝑥𝐴))
14 elin 3387 . . . 4 (𝑥 ∈ (dom 𝑅𝐴) ↔ (𝑥 ∈ dom 𝑅𝑥𝐴))
15 19.41v 1949 . . . 4 (∃𝑦(𝑥𝑅𝑦𝑥𝐴) ↔ (∃𝑦 𝑥𝑅𝑦𝑥𝐴))
1613, 14, 153bitr4i 212 . . 3 (𝑥 ∈ (dom 𝑅𝐴) ↔ ∃𝑦(𝑥𝑅𝑦𝑥𝐴))
177elima2 5073 . . 3 (𝑥 ∈ (𝑅 “ (𝑅𝐴)) ↔ ∃𝑦(𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
1811, 16, 173imtr4i 201 . 2 (𝑥 ∈ (dom 𝑅𝐴) → 𝑥 ∈ (𝑅 “ (𝑅𝐴)))
1918ssriv 3228 1 (dom 𝑅𝐴) ⊆ (𝑅 “ (𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1538  wcel 2200  cin 3196  wss 3197   class class class wbr 4082  ccnv 4717  dom cdm 4718  cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator