ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminss GIF version

Theorem dminss 5106
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
dminss (dom 𝑅𝐴) ⊆ (𝑅 “ (𝑅𝐴))

Proof of Theorem dminss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.8a 1614 . . . . . . 7 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
21ancoms 268 . . . . . 6 ((𝑥𝑅𝑦𝑥𝐴) → ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
3 vex 2776 . . . . . . 7 𝑦 ∈ V
43elima2 5037 . . . . . 6 (𝑦 ∈ (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
52, 4sylibr 134 . . . . 5 ((𝑥𝑅𝑦𝑥𝐴) → 𝑦 ∈ (𝑅𝐴))
6 simpl 109 . . . . . 6 ((𝑥𝑅𝑦𝑥𝐴) → 𝑥𝑅𝑦)
7 vex 2776 . . . . . . 7 𝑥 ∈ V
83, 7brcnv 4869 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
96, 8sylibr 134 . . . . 5 ((𝑥𝑅𝑦𝑥𝐴) → 𝑦𝑅𝑥)
105, 9jca 306 . . . 4 ((𝑥𝑅𝑦𝑥𝐴) → (𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
1110eximi 1624 . . 3 (∃𝑦(𝑥𝑅𝑦𝑥𝐴) → ∃𝑦(𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
127eldm 4884 . . . . 5 (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦)
1312anbi1i 458 . . . 4 ((𝑥 ∈ dom 𝑅𝑥𝐴) ↔ (∃𝑦 𝑥𝑅𝑦𝑥𝐴))
14 elin 3360 . . . 4 (𝑥 ∈ (dom 𝑅𝐴) ↔ (𝑥 ∈ dom 𝑅𝑥𝐴))
15 19.41v 1927 . . . 4 (∃𝑦(𝑥𝑅𝑦𝑥𝐴) ↔ (∃𝑦 𝑥𝑅𝑦𝑥𝐴))
1613, 14, 153bitr4i 212 . . 3 (𝑥 ∈ (dom 𝑅𝐴) ↔ ∃𝑦(𝑥𝑅𝑦𝑥𝐴))
177elima2 5037 . . 3 (𝑥 ∈ (𝑅 “ (𝑅𝐴)) ↔ ∃𝑦(𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
1811, 16, 173imtr4i 201 . 2 (𝑥 ∈ (dom 𝑅𝐴) → 𝑥 ∈ (𝑅 “ (𝑅𝐴)))
1918ssriv 3201 1 (dom 𝑅𝐴) ⊆ (𝑅 “ (𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1516  wcel 2177  cin 3169  wss 3170   class class class wbr 4051  ccnv 4682  dom cdm 4683  cima 4686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator