ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetdmdm Unicode version

Theorem psmetdmdm 14829
Description: Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmetdmdm  |-  ( D  e.  (PsMet `  X
)  ->  X  =  dom  dom  D )

Proof of Theorem psmetdmdm
Dummy variables  x  y  z  w  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 14338 . . . . . 6  |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  (
( y d y )  =  0  /\ 
A. z  e.  x  A. w  e.  x  ( y d z )  <_  ( (
w d y ) +e ( w d z ) ) ) } )
21mptrcl 5664 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
3 ispsmet 14828 . . . . . 6  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
43biimpa 296 . . . . 5  |-  ( ( X  e.  _V  /\  D  e.  (PsMet `  X
) )  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  (
( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) )
52, 4mpancom 422 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  (
( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) )
65simpld 112 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
7 fdm 5433 . . . 4  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
87dmeqd 4881 . . 3  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
dom  D  =  dom  ( X  X.  X
) )
96, 8syl 14 . 2  |-  ( D  e.  (PsMet `  X
)  ->  dom  dom  D  =  dom  ( X  X.  X ) )
10 dmxpid 4900 . 2  |-  dom  ( X  X.  X )  =  X
119, 10eqtr2di 2255 1  |-  ( D  e.  (PsMet `  X
)  ->  X  =  dom  dom  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488   _Vcvv 2772   class class class wbr 4045    X. cxp 4674   dom cdm 4676   -->wf 5268   ` cfv 5272  (class class class)co 5946    ^m cmap 6737   0cc0 7927   RR*cxr 8108    <_ cle 8110   +ecxad 9894  PsMetcpsmet 14330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-map 6739  df-pnf 8111  df-mnf 8112  df-xr 8113  df-psmet 14338
This theorem is referenced by:  blfvalps  14890
  Copyright terms: Public domain W3C validator