ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetdmdm Unicode version

Theorem psmetdmdm 13118
Description: Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmetdmdm  |-  ( D  e.  (PsMet `  X
)  ->  X  =  dom  dom  D )

Proof of Theorem psmetdmdm
Dummy variables  x  y  z  w  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 12781 . . . . . 6  |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  (
( y d y )  =  0  /\ 
A. z  e.  x  A. w  e.  x  ( y d z )  <_  ( (
w d y ) +e ( w d z ) ) ) } )
21mptrcl 5578 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
3 ispsmet 13117 . . . . . 6  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
43biimpa 294 . . . . 5  |-  ( ( X  e.  _V  /\  D  e.  (PsMet `  X
) )  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  (
( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) )
52, 4mpancom 420 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  (
( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) )
65simpld 111 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
7 fdm 5353 . . . 4  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
87dmeqd 4813 . . 3  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
dom  D  =  dom  ( X  X.  X
) )
96, 8syl 14 . 2  |-  ( D  e.  (PsMet `  X
)  ->  dom  dom  D  =  dom  ( X  X.  X ) )
10 dmxpid 4832 . 2  |-  dom  ( X  X.  X )  =  X
119, 10eqtr2di 2220 1  |-  ( D  e.  (PsMet `  X
)  ->  X  =  dom  dom  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730   class class class wbr 3989    X. cxp 4609   dom cdm 4611   -->wf 5194   ` cfv 5198  (class class class)co 5853    ^m cmap 6626   0cc0 7774   RR*cxr 7953    <_ cle 7955   +ecxad 9727  PsMetcpsmet 12773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-psmet 12781
This theorem is referenced by:  blfvalps  13179
  Copyright terms: Public domain W3C validator