ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom2 Unicode version

Theorem dom2 6572
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain.  C and  D can be read  C ( x ) and  D ( y ), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
Hypotheses
Ref Expression
dom2.1  |-  ( x  e.  A  ->  C  e.  B )
dom2.2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <-> 
x  =  y ) )
Assertion
Ref Expression
dom2  |-  ( B  e.  V  ->  A  ~<_  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D
Allowed substitution hints:    C( x)    D( y)    V( x, y)

Proof of Theorem dom2
StepHypRef Expression
1 eqid 2095 . 2  |-  A  =  A
2 dom2.1 . . . 4  |-  ( x  e.  A  ->  C  e.  B )
32a1i 9 . . 3  |-  ( A  =  A  ->  (
x  e.  A  ->  C  e.  B )
)
4 dom2.2 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <-> 
x  =  y ) )
54a1i 9 . . 3  |-  ( A  =  A  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( C  =  D  <->  x  =  y
) ) )
63, 5dom2d 6570 . 2  |-  ( A  =  A  ->  ( B  e.  V  ->  A  ~<_  B ) )
71, 6ax-mp 7 1  |-  ( B  e.  V  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296    e. wcel 1445   class class class wbr 3867    ~<_ cdom 6536
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-dom 6539
This theorem is referenced by:  infpwfidom  6921  tgdom  11940
  Copyright terms: Public domain W3C validator