ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom2 Unicode version

Theorem dom2 6889
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain.  C and  D can be read  C ( x ) and  D ( y ), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
Hypotheses
Ref Expression
dom2.1  |-  ( x  e.  A  ->  C  e.  B )
dom2.2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <-> 
x  =  y ) )
Assertion
Ref Expression
dom2  |-  ( B  e.  V  ->  A  ~<_  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D
Allowed substitution hints:    C( x)    D( y)    V( x, y)

Proof of Theorem dom2
StepHypRef Expression
1 eqid 2207 . 2  |-  A  =  A
2 dom2.1 . . . 4  |-  ( x  e.  A  ->  C  e.  B )
32a1i 9 . . 3  |-  ( A  =  A  ->  (
x  e.  A  ->  C  e.  B )
)
4 dom2.2 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <-> 
x  =  y ) )
54a1i 9 . . 3  |-  ( A  =  A  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( C  =  D  <->  x  =  y
) ) )
63, 5dom2d 6887 . 2  |-  ( A  =  A  ->  ( B  e.  V  ->  A  ~<_  B ) )
71, 6ax-mp 5 1  |-  ( B  e.  V  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   class class class wbr 4059    ~<_ cdom 6849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-dom 6852
This theorem is referenced by:  infpwfidom  7337  tgdom  14659
  Copyright terms: Public domain W3C validator