ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3 Unicode version

Theorem dom3 6742
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain.  C and  D can be read  C ( x ) and  D ( y ), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2.1  |-  ( x  e.  A  ->  C  e.  B )
dom2.2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <-> 
x  =  y ) )
Assertion
Ref Expression
dom3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    x, V, y    x, W, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem dom3
StepHypRef Expression
1 dom2.1 . . 3  |-  ( x  e.  A  ->  C  e.  B )
21a1i 9 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  A  ->  C  e.  B ) )
3 dom2.2 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <-> 
x  =  y ) )
43a1i 9 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
5 simpl 108 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
6 simpr 109 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  W )
72, 4, 5, 6dom3d 6740 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   class class class wbr 3982    ~<_ cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fv 5196  df-dom 6708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator