ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3 Unicode version

Theorem dom3 6835
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain.  C and  D can be read  C ( x ) and  D ( y ), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2.1  |-  ( x  e.  A  ->  C  e.  B )
dom2.2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <-> 
x  =  y ) )
Assertion
Ref Expression
dom3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    x, V, y    x, W, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem dom3
StepHypRef Expression
1 dom2.1 . . 3  |-  ( x  e.  A  ->  C  e.  B )
21a1i 9 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  A  ->  C  e.  B ) )
3 dom2.2 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <-> 
x  =  y ) )
43a1i 9 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
5 simpl 109 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
6 simpr 110 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  W )
72, 4, 5, 6dom3d 6833 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033    ~<_ cdom 6798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fv 5266  df-dom 6801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator