ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3d Unicode version

Theorem dom3d 6676
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2d.1  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
dom2d.2  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
dom3d.3  |-  ( ph  ->  A  e.  V )
dom3d.4  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
dom3d  |-  ( ph  ->  A  ~<_  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    V( x, y)    W( x, y)

Proof of Theorem dom3d
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dom2d.1 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
2 dom2d.2 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
31, 2dom2lem 6674 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-> B )
4 f1f 5336 . . . . 5  |-  ( ( x  e.  A  |->  C ) : A -1-1-> B  ->  ( x  e.  A  |->  C ) : A --> B )
53, 4syl 14 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> B )
6 dom3d.3 . . . 4  |-  ( ph  ->  A  e.  V )
7 dom3d.4 . . . 4  |-  ( ph  ->  B  e.  W )
8 fex2 5299 . . . 4  |-  ( ( ( x  e.  A  |->  C ) : A --> B  /\  A  e.  V  /\  B  e.  W
)  ->  ( x  e.  A  |->  C )  e.  _V )
95, 6, 7, 8syl3anc 1217 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  _V )
10 f1eq1 5331 . . . 4  |-  ( z  =  ( x  e.  A  |->  C )  -> 
( z : A -1-1-> B  <-> 
( x  e.  A  |->  C ) : A -1-1-> B ) )
1110spcegv 2777 . . 3  |-  ( ( x  e.  A  |->  C )  e.  _V  ->  ( ( x  e.  A  |->  C ) : A -1-1-> B  ->  E. z  z : A -1-1-> B ) )
129, 3, 11sylc 62 . 2  |-  ( ph  ->  E. z  z : A -1-1-> B )
13 brdomg 6650 . . 3  |-  ( B  e.  W  ->  ( A  ~<_  B  <->  E. z 
z : A -1-1-> B
) )
147, 13syl 14 . 2  |-  ( ph  ->  ( A  ~<_  B  <->  E. z 
z : A -1-1-> B
) )
1512, 14mpbird 166 1  |-  ( ph  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   _Vcvv 2689   class class class wbr 3937    |-> cmpt 3997   -->wf 5127   -1-1->wf1 5128    ~<_ cdom 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fv 5139  df-dom 6644
This theorem is referenced by:  dom3  6678  xpdom2  6733  fopwdom  6738
  Copyright terms: Public domain W3C validator