ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3 GIF version

Theorem dom3 6832
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2.1 (𝑥𝐴𝐶𝐵)
dom2.2 ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))
Assertion
Ref Expression
dom3 ((𝐴𝑉𝐵𝑊) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem dom3
StepHypRef Expression
1 dom2.1 . . 3 (𝑥𝐴𝐶𝐵)
21a1i 9 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥𝐴𝐶𝐵))
3 dom2.2 . . 3 ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))
43a1i 9 . 2 ((𝐴𝑉𝐵𝑊) → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
5 simpl 109 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
6 simpr 110 . 2 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
72, 4, 5, 6dom3d 6830 1 ((𝐴𝑉𝐵𝑊) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4030  cdom 6795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fv 5263  df-dom 6798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator