ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecovcom Unicode version

Theorem ecovcom 6608
Description: Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6609 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
ecovcom.1  |-  C  =  ( ( S  X.  S ) /.  .~  )
ecovcom.2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )
ecovcom.3  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
ecovcom.4  |-  D  =  H
ecovcom.5  |-  G  =  J
Assertion
Ref Expression
ecovcom  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A  .+  B
)  =  ( B 
.+  A ) )
Distinct variable groups:    x, y, z, w, A    z, B, w    x,  .+ , y, z, w    x,  .~ , y, z, w    x, S, y, z, w    z, C, w
Allowed substitution hints:    B( x, y)    C( x, y)    D( x, y, z, w)    G( x, y, z, w)    H( x, y, z, w)    J( x, y, z, w)

Proof of Theorem ecovcom
StepHypRef Expression
1 ecovcom.1 . 2  |-  C  =  ( ( S  X.  S ) /.  .~  )
2 oveq1 5849 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( A  .+  [ <. z ,  w >. ]  .~  ) )
3 oveq2 5850 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A
) )
42, 3eqeq12d 2180 . 2  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  <->  ( A  .+  [ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A ) ) )
5 oveq2 5850 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( A  .+  [ <. z ,  w >. ]  .~  )  =  ( A  .+  B ) )
6 oveq1 5849 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( [ <. z ,  w >. ]  .~  .+  A )  =  ( B  .+  A ) )
75, 6eqeq12d 2180 . 2  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( ( A  .+  [
<. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A
)  <->  ( A  .+  B )  =  ( B  .+  A ) ) )
8 ecovcom.4 . . . 4  |-  D  =  H
9 ecovcom.5 . . . 4  |-  G  =  J
10 opeq12 3760 . . . . 5  |-  ( ( D  =  H  /\  G  =  J )  -> 
<. D ,  G >.  = 
<. H ,  J >. )
1110eceq1d 6537 . . . 4  |-  ( ( D  =  H  /\  G  =  J )  ->  [ <. D ,  G >. ]  .~  =  [ <. H ,  J >. ]  .~  )
128, 9, 11mp2an 423 . . 3  |-  [ <. D ,  G >. ]  .~  =  [ <. H ,  J >. ]  .~
13 ecovcom.2 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )
14 ecovcom.3 . . . 4  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
1514ancoms 266 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
1612, 13, 153eqtr4a 2225 . 2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  ) )
171, 4, 7, 162ecoptocl 6589 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A  .+  B
)  =  ( B 
.+  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   <.cop 3579    X. cxp 4602  (class class class)co 5842   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fv 5196  df-ov 5845  df-ec 6503  df-qs 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator