ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecovcom Unicode version

Theorem ecovcom 6389
Description: Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6390 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
ecovcom.1  |-  C  =  ( ( S  X.  S ) /.  .~  )
ecovcom.2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )
ecovcom.3  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
ecovcom.4  |-  D  =  H
ecovcom.5  |-  G  =  J
Assertion
Ref Expression
ecovcom  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A  .+  B
)  =  ( B 
.+  A ) )
Distinct variable groups:    x, y, z, w, A    z, B, w    x,  .+ , y, z, w    x,  .~ , y, z, w    x, S, y, z, w    z, C, w
Allowed substitution hints:    B( x, y)    C( x, y)    D( x, y, z, w)    G( x, y, z, w)    H( x, y, z, w)    J( x, y, z, w)

Proof of Theorem ecovcom
StepHypRef Expression
1 ecovcom.1 . 2  |-  C  =  ( ( S  X.  S ) /.  .~  )
2 oveq1 5651 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( A  .+  [ <. z ,  w >. ]  .~  ) )
3 oveq2 5652 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A
) )
42, 3eqeq12d 2102 . 2  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  <->  ( A  .+  [ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A ) ) )
5 oveq2 5652 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( A  .+  [ <. z ,  w >. ]  .~  )  =  ( A  .+  B ) )
6 oveq1 5651 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( [ <. z ,  w >. ]  .~  .+  A )  =  ( B  .+  A ) )
75, 6eqeq12d 2102 . 2  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( ( A  .+  [
<. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A
)  <->  ( A  .+  B )  =  ( B  .+  A ) ) )
8 ecovcom.4 . . . 4  |-  D  =  H
9 ecovcom.5 . . . 4  |-  G  =  J
10 opeq12 3622 . . . . 5  |-  ( ( D  =  H  /\  G  =  J )  -> 
<. D ,  G >.  = 
<. H ,  J >. )
1110eceq1d 6318 . . . 4  |-  ( ( D  =  H  /\  G  =  J )  ->  [ <. D ,  G >. ]  .~  =  [ <. H ,  J >. ]  .~  )
128, 9, 11mp2an 417 . . 3  |-  [ <. D ,  G >. ]  .~  =  [ <. H ,  J >. ]  .~
13 ecovcom.2 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )
14 ecovcom.3 . . . 4  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
1514ancoms 264 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
1612, 13, 153eqtr4a 2146 . 2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  ) )
171, 4, 7, 162ecoptocl 6370 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A  .+  B
)  =  ( B 
.+  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   <.cop 3447    X. cxp 4434  (class class class)co 5644   [cec 6280   /.cqs 6281
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-br 3844  df-opab 3898  df-xp 4442  df-cnv 4444  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fv 5018  df-ov 5647  df-ec 6284  df-qs 6288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator