| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2ecoptocl | Unicode version | ||
| Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.) | 
| Ref | Expression | 
|---|---|
| 2ecoptocl.1 | 
 | 
| 2ecoptocl.2 | 
 | 
| 2ecoptocl.3 | 
 | 
| 2ecoptocl.4 | 
 | 
| Ref | Expression | 
|---|---|
| 2ecoptocl | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2ecoptocl.1 | 
. . 3
 | |
| 2 | 2ecoptocl.3 | 
. . . 4
 | |
| 3 | 2 | imbi2d 230 | 
. . 3
 | 
| 4 | 2ecoptocl.2 | 
. . . . . 6
 | |
| 5 | 4 | imbi2d 230 | 
. . . . 5
 | 
| 6 | 2ecoptocl.4 | 
. . . . . 6
 | |
| 7 | 6 | ex 115 | 
. . . . 5
 | 
| 8 | 1, 5, 7 | ecoptocl 6681 | 
. . . 4
 | 
| 9 | 8 | com12 30 | 
. . 3
 | 
| 10 | 1, 3, 9 | ecoptocl 6681 | 
. 2
 | 
| 11 | 10 | impcom 125 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-ec 6594 df-qs 6598 | 
| This theorem is referenced by: 3ecoptocl 6683 ecovcom 6701 ecovicom 6702 addclnq 7442 mulclnq 7443 nqtri3or 7463 ltexnqq 7475 addclnq0 7518 mulclnq0 7519 distrnq0 7526 mulcomnq0 7527 addassnq0 7529 addclsr 7820 mulclsr 7821 mulgt0sr 7845 aptisr 7846 | 
| Copyright terms: Public domain | W3C validator |