ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ecoptocl Unicode version

Theorem 2ecoptocl 6380
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
2ecoptocl.1  |-  S  =  ( ( C  X.  D ) /. R
)
2ecoptocl.2  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
2ecoptocl.3  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ps  <->  ch )
)
2ecoptocl.4  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
Assertion
Ref Expression
2ecoptocl  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
Distinct variable groups:    x, y, z, w, A    z, B, w    x, C, y, z, w    x, D, y, z, w    z, S, w    x, R, y, z, w    ps, x, y    ch, z, w
Allowed substitution hints:    ph( x, y, z, w)    ps( z, w)    ch( x, y)    B( x, y)    S( x, y)

Proof of Theorem 2ecoptocl
StepHypRef Expression
1 2ecoptocl.1 . . 3  |-  S  =  ( ( C  X.  D ) /. R
)
2 2ecoptocl.3 . . . 4  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ps  <->  ch )
)
32imbi2d 228 . . 3  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ( A  e.  S  ->  ps )  <->  ( A  e.  S  ->  ch ) ) )
4 2ecoptocl.2 . . . . . 6  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
54imbi2d 228 . . . . 5  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ( ( z  e.  C  /\  w  e.  D )  ->  ph )  <->  ( ( z  e.  C  /\  w  e.  D
)  ->  ps )
) )
6 2ecoptocl.4 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
76ex 113 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( ( z  e.  C  /\  w  e.  D )  ->  ph )
)
81, 5, 7ecoptocl 6379 . . . 4  |-  ( A  e.  S  ->  (
( z  e.  C  /\  w  e.  D
)  ->  ps )
)
98com12 30 . . 3  |-  ( ( z  e.  C  /\  w  e.  D )  ->  ( A  e.  S  ->  ps ) )
101, 3, 9ecoptocl 6379 . 2  |-  ( B  e.  S  ->  ( A  e.  S  ->  ch ) )
1110impcom 123 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   <.cop 3449    X. cxp 4436   [cec 6290   /.cqs 6291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-xp 4444  df-cnv 4446  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-ec 6294  df-qs 6298
This theorem is referenced by:  3ecoptocl  6381  ecovcom  6399  ecovicom  6400  addclnq  6934  mulclnq  6935  nqtri3or  6955  ltexnqq  6967  addclnq0  7010  mulclnq0  7011  distrnq0  7018  mulcomnq0  7019  addassnq0  7021  addclsr  7299  mulclsr  7300  mulgt0sr  7323  aptisr  7324
  Copyright terms: Public domain W3C validator