| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ecoptocl | Unicode version | ||
| Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| 2ecoptocl.1 |
|
| 2ecoptocl.2 |
|
| 2ecoptocl.3 |
|
| 2ecoptocl.4 |
|
| Ref | Expression |
|---|---|
| 2ecoptocl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ecoptocl.1 |
. . 3
| |
| 2 | 2ecoptocl.3 |
. . . 4
| |
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | 2ecoptocl.2 |
. . . . . 6
| |
| 5 | 4 | imbi2d 230 |
. . . . 5
|
| 6 | 2ecoptocl.4 |
. . . . . 6
| |
| 7 | 6 | ex 115 |
. . . . 5
|
| 8 | 1, 5, 7 | ecoptocl 6709 |
. . . 4
|
| 9 | 8 | com12 30 |
. . 3
|
| 10 | 1, 3, 9 | ecoptocl 6709 |
. 2
|
| 11 | 10 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-ec 6622 df-qs 6626 |
| This theorem is referenced by: 3ecoptocl 6711 ecovcom 6729 ecovicom 6730 addclnq 7488 mulclnq 7489 nqtri3or 7509 ltexnqq 7521 addclnq0 7564 mulclnq0 7565 distrnq0 7572 mulcomnq0 7573 addassnq0 7575 addclsr 7866 mulclsr 7867 mulgt0sr 7891 aptisr 7892 |
| Copyright terms: Public domain | W3C validator |