ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ecoptocl Unicode version

Theorem 2ecoptocl 6709
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
2ecoptocl.1  |-  S  =  ( ( C  X.  D ) /. R
)
2ecoptocl.2  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
2ecoptocl.3  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ps  <->  ch )
)
2ecoptocl.4  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
Assertion
Ref Expression
2ecoptocl  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
Distinct variable groups:    x, y, z, w, A    z, B, w    x, C, y, z, w    x, D, y, z, w    z, S, w    x, R, y, z, w    ps, x, y    ch, z, w
Allowed substitution hints:    ph( x, y, z, w)    ps( z, w)    ch( x, y)    B( x, y)    S( x, y)

Proof of Theorem 2ecoptocl
StepHypRef Expression
1 2ecoptocl.1 . . 3  |-  S  =  ( ( C  X.  D ) /. R
)
2 2ecoptocl.3 . . . 4  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ps  <->  ch )
)
32imbi2d 230 . . 3  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ( A  e.  S  ->  ps )  <->  ( A  e.  S  ->  ch ) ) )
4 2ecoptocl.2 . . . . . 6  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
54imbi2d 230 . . . . 5  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ( ( z  e.  C  /\  w  e.  D )  ->  ph )  <->  ( ( z  e.  C  /\  w  e.  D
)  ->  ps )
) )
6 2ecoptocl.4 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
76ex 115 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( ( z  e.  C  /\  w  e.  D )  ->  ph )
)
81, 5, 7ecoptocl 6708 . . . 4  |-  ( A  e.  S  ->  (
( z  e.  C  /\  w  e.  D
)  ->  ps )
)
98com12 30 . . 3  |-  ( ( z  e.  C  /\  w  e.  D )  ->  ( A  e.  S  ->  ps ) )
101, 3, 9ecoptocl 6708 . 2  |-  ( B  e.  S  ->  ( A  e.  S  ->  ch ) )
1110impcom 125 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   <.cop 3635    X. cxp 4672   [cec 6617   /.cqs 6618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-ec 6621  df-qs 6625
This theorem is referenced by:  3ecoptocl  6710  ecovcom  6728  ecovicom  6729  addclnq  7487  mulclnq  7488  nqtri3or  7508  ltexnqq  7520  addclnq0  7563  mulclnq0  7564  distrnq0  7571  mulcomnq0  7572  addassnq0  7574  addclsr  7865  mulclsr  7866  mulgt0sr  7890  aptisr  7891
  Copyright terms: Public domain W3C validator