| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ecoptocl | Unicode version | ||
| Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| 2ecoptocl.1 |
|
| 2ecoptocl.2 |
|
| 2ecoptocl.3 |
|
| 2ecoptocl.4 |
|
| Ref | Expression |
|---|---|
| 2ecoptocl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ecoptocl.1 |
. . 3
| |
| 2 | 2ecoptocl.3 |
. . . 4
| |
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | 2ecoptocl.2 |
. . . . . 6
| |
| 5 | 4 | imbi2d 230 |
. . . . 5
|
| 6 | 2ecoptocl.4 |
. . . . . 6
| |
| 7 | 6 | ex 115 |
. . . . 5
|
| 8 | 1, 5, 7 | ecoptocl 6690 |
. . . 4
|
| 9 | 8 | com12 30 |
. . 3
|
| 10 | 1, 3, 9 | ecoptocl 6690 |
. 2
|
| 11 | 10 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-ec 6603 df-qs 6607 |
| This theorem is referenced by: 3ecoptocl 6692 ecovcom 6710 ecovicom 6711 addclnq 7459 mulclnq 7460 nqtri3or 7480 ltexnqq 7492 addclnq0 7535 mulclnq0 7536 distrnq0 7543 mulcomnq0 7544 addassnq0 7546 addclsr 7837 mulclsr 7838 mulgt0sr 7862 aptisr 7863 |
| Copyright terms: Public domain | W3C validator |