ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ecoptocl Unicode version

Theorem 2ecoptocl 6768
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
2ecoptocl.1  |-  S  =  ( ( C  X.  D ) /. R
)
2ecoptocl.2  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
2ecoptocl.3  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ps  <->  ch )
)
2ecoptocl.4  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
Assertion
Ref Expression
2ecoptocl  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
Distinct variable groups:    x, y, z, w, A    z, B, w    x, C, y, z, w    x, D, y, z, w    z, S, w    x, R, y, z, w    ps, x, y    ch, z, w
Allowed substitution hints:    ph( x, y, z, w)    ps( z, w)    ch( x, y)    B( x, y)    S( x, y)

Proof of Theorem 2ecoptocl
StepHypRef Expression
1 2ecoptocl.1 . . 3  |-  S  =  ( ( C  X.  D ) /. R
)
2 2ecoptocl.3 . . . 4  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ps  <->  ch )
)
32imbi2d 230 . . 3  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ( A  e.  S  ->  ps )  <->  ( A  e.  S  ->  ch ) ) )
4 2ecoptocl.2 . . . . . 6  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
54imbi2d 230 . . . . 5  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ( ( z  e.  C  /\  w  e.  D )  ->  ph )  <->  ( ( z  e.  C  /\  w  e.  D
)  ->  ps )
) )
6 2ecoptocl.4 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
76ex 115 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( ( z  e.  C  /\  w  e.  D )  ->  ph )
)
81, 5, 7ecoptocl 6767 . . . 4  |-  ( A  e.  S  ->  (
( z  e.  C  /\  w  e.  D
)  ->  ps )
)
98com12 30 . . 3  |-  ( ( z  e.  C  /\  w  e.  D )  ->  ( A  e.  S  ->  ps ) )
101, 3, 9ecoptocl 6767 . 2  |-  ( B  e.  S  ->  ( A  e.  S  ->  ch ) )
1110impcom 125 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   <.cop 3669    X. cxp 4716   [cec 6676   /.cqs 6677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-ec 6680  df-qs 6684
This theorem is referenced by:  3ecoptocl  6769  ecovcom  6787  ecovicom  6788  addclnq  7558  mulclnq  7559  nqtri3or  7579  ltexnqq  7591  addclnq0  7634  mulclnq0  7635  distrnq0  7642  mulcomnq0  7643  addassnq0  7645  addclsr  7936  mulclsr  7937  mulgt0sr  7961  aptisr  7962
  Copyright terms: Public domain W3C validator