Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ecoptocl | Unicode version |
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
2ecoptocl.1 | |
2ecoptocl.2 | |
2ecoptocl.3 | |
2ecoptocl.4 |
Ref | Expression |
---|---|
2ecoptocl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ecoptocl.1 | . . 3 | |
2 | 2ecoptocl.3 | . . . 4 | |
3 | 2 | imbi2d 229 | . . 3 |
4 | 2ecoptocl.2 | . . . . . 6 | |
5 | 4 | imbi2d 229 | . . . . 5 |
6 | 2ecoptocl.4 | . . . . . 6 | |
7 | 6 | ex 114 | . . . . 5 |
8 | 1, 5, 7 | ecoptocl 6600 | . . . 4 |
9 | 8 | com12 30 | . . 3 |
10 | 1, 3, 9 | ecoptocl 6600 | . 2 |
11 | 10 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cop 3586 cxp 4609 cec 6511 cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-ec 6515 df-qs 6519 |
This theorem is referenced by: 3ecoptocl 6602 ecovcom 6620 ecovicom 6621 addclnq 7337 mulclnq 7338 nqtri3or 7358 ltexnqq 7370 addclnq0 7413 mulclnq0 7414 distrnq0 7421 mulcomnq0 7422 addassnq0 7424 addclsr 7715 mulclsr 7716 mulgt0sr 7740 aptisr 7741 |
Copyright terms: Public domain | W3C validator |