| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ecoptocl | Unicode version | ||
| Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| 2ecoptocl.1 |
|
| 2ecoptocl.2 |
|
| 2ecoptocl.3 |
|
| 2ecoptocl.4 |
|
| Ref | Expression |
|---|---|
| 2ecoptocl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ecoptocl.1 |
. . 3
| |
| 2 | 2ecoptocl.3 |
. . . 4
| |
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | 2ecoptocl.2 |
. . . . . 6
| |
| 5 | 4 | imbi2d 230 |
. . . . 5
|
| 6 | 2ecoptocl.4 |
. . . . . 6
| |
| 7 | 6 | ex 115 |
. . . . 5
|
| 8 | 1, 5, 7 | ecoptocl 6708 |
. . . 4
|
| 9 | 8 | com12 30 |
. . 3
|
| 10 | 1, 3, 9 | ecoptocl 6708 |
. 2
|
| 11 | 10 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-ec 6621 df-qs 6625 |
| This theorem is referenced by: 3ecoptocl 6710 ecovcom 6728 ecovicom 6729 addclnq 7487 mulclnq 7488 nqtri3or 7508 ltexnqq 7520 addclnq0 7563 mulclnq0 7564 distrnq0 7571 mulcomnq0 7572 addassnq0 7574 addclsr 7865 mulclsr 7866 mulgt0sr 7890 aptisr 7891 |
| Copyright terms: Public domain | W3C validator |