ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecovcom GIF version

Theorem ecovcom 6608
Description: Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6609 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
ecovcom.1 𝐶 = ((𝑆 × 𝑆) / )
ecovcom.2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )
ecovcom.3 (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
ecovcom.4 𝐷 = 𝐻
ecovcom.5 𝐺 = 𝐽
Assertion
Ref Expression
ecovcom ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑧,𝐵,𝑤   𝑥, + ,𝑦,𝑧,𝑤   𝑥, ,𝑦,𝑧,𝑤   𝑥,𝑆,𝑦,𝑧,𝑤   𝑧,𝐶,𝑤
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem ecovcom
StepHypRef Expression
1 ecovcom.1 . 2 𝐶 = ((𝑆 × 𝑆) / )
2 oveq1 5849 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = (𝐴 + [⟨𝑧, 𝑤⟩] ))
3 oveq2 5850 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴))
42, 3eqeq12d 2180 . 2 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) ↔ (𝐴 + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴)))
5 oveq2 5850 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 + [⟨𝑧, 𝑤⟩] ) = (𝐴 + 𝐵))
6 oveq1 5849 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → ([⟨𝑧, 𝑤⟩] + 𝐴) = (𝐵 + 𝐴))
75, 6eqeq12d 2180 . 2 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
8 ecovcom.4 . . . 4 𝐷 = 𝐻
9 ecovcom.5 . . . 4 𝐺 = 𝐽
10 opeq12 3760 . . . . 5 ((𝐷 = 𝐻𝐺 = 𝐽) → ⟨𝐷, 𝐺⟩ = ⟨𝐻, 𝐽⟩)
1110eceq1d 6537 . . . 4 ((𝐷 = 𝐻𝐺 = 𝐽) → [⟨𝐷, 𝐺⟩] = [⟨𝐻, 𝐽⟩] )
128, 9, 11mp2an 423 . . 3 [⟨𝐷, 𝐺⟩] = [⟨𝐻, 𝐽⟩]
13 ecovcom.2 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )
14 ecovcom.3 . . . 4 (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
1514ancoms 266 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
1612, 13, 153eqtr4a 2225 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ))
171, 4, 7, 162ecoptocl 6589 1 ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cop 3579   × cxp 4602  (class class class)co 5842  [cec 6499   / cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fv 5196  df-ov 5845  df-ec 6503  df-qs 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator