![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecovcom | GIF version |
Description: Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6645 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
Ref | Expression |
---|---|
ecovcom.1 | ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) |
ecovcom.2 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = [⟨𝐷, 𝐺⟩] ∼ ) |
ecovcom.3 | ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = [⟨𝐻, 𝐽⟩] ∼ ) |
ecovcom.4 | ⊢ 𝐷 = 𝐻 |
ecovcom.5 | ⊢ 𝐺 = 𝐽 |
Ref | Expression |
---|---|
ecovcom | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecovcom.1 | . 2 ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) | |
2 | oveq1 5884 | . . 3 ⊢ ([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = (𝐴 + [⟨𝑧, 𝑤⟩] ∼ )) | |
3 | oveq2 5885 | . . 3 ⊢ ([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + 𝐴)) | |
4 | 2, 3 | eqeq12d 2192 | . 2 ⊢ ([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → (([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) ↔ (𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + 𝐴))) |
5 | oveq2 5885 | . . 3 ⊢ ([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → (𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) = (𝐴 + 𝐵)) | |
6 | oveq1 5884 | . . 3 ⊢ ([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → ([⟨𝑧, 𝑤⟩] ∼ + 𝐴) = (𝐵 + 𝐴)) | |
7 | 5, 6 | eqeq12d 2192 | . 2 ⊢ ([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → ((𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
8 | ecovcom.4 | . . . 4 ⊢ 𝐷 = 𝐻 | |
9 | ecovcom.5 | . . . 4 ⊢ 𝐺 = 𝐽 | |
10 | opeq12 3782 | . . . . 5 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → ⟨𝐷, 𝐺⟩ = ⟨𝐻, 𝐽⟩) | |
11 | 10 | eceq1d 6573 | . . . 4 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → [⟨𝐷, 𝐺⟩] ∼ = [⟨𝐻, 𝐽⟩] ∼ ) |
12 | 8, 9, 11 | mp2an 426 | . . 3 ⊢ [⟨𝐷, 𝐺⟩] ∼ = [⟨𝐻, 𝐽⟩] ∼ |
13 | ecovcom.2 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = [⟨𝐷, 𝐺⟩] ∼ ) | |
14 | ecovcom.3 | . . . 4 ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = [⟨𝐻, 𝐽⟩] ∼ ) | |
15 | 14 | ancoms 268 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = [⟨𝐻, 𝐽⟩] ∼ ) |
16 | 12, 13, 15 | 3eqtr4a 2236 | . 2 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ )) |
17 | 1, 4, 7, 16 | 2ecoptocl 6625 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 × cxp 4626 (class class class)co 5877 [cec 6535 / cqs 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fv 5226 df-ov 5880 df-ec 6539 df-qs 6543 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |