Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecovicom | Unicode version |
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.) |
Ref | Expression |
---|---|
ecovicom.1 | |
ecovicom.2 | |
ecovicom.3 | |
ecovicom.4 | |
ecovicom.5 |
Ref | Expression |
---|---|
ecovicom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecovicom.1 | . 2 | |
2 | oveq1 5849 | . . 3 | |
3 | oveq2 5850 | . . 3 | |
4 | 2, 3 | eqeq12d 2180 | . 2 |
5 | oveq2 5850 | . . 3 | |
6 | oveq1 5849 | . . 3 | |
7 | 5, 6 | eqeq12d 2180 | . 2 |
8 | ecovicom.4 | . . . 4 | |
9 | ecovicom.5 | . . . 4 | |
10 | opeq12 3760 | . . . . 5 | |
11 | 10 | eceq1d 6537 | . . . 4 |
12 | 8, 9, 11 | syl2anc 409 | . . 3 |
13 | ecovicom.2 | . . 3 | |
14 | ecovicom.3 | . . . 4 | |
15 | 14 | ancoms 266 | . . 3 |
16 | 12, 13, 15 | 3eqtr4d 2208 | . 2 |
17 | 1, 4, 7, 16 | 2ecoptocl 6589 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cop 3579 cxp 4602 (class class class)co 5842 cec 6499 cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fv 5196 df-ov 5845 df-ec 6503 df-qs 6507 |
This theorem is referenced by: addcomnqg 7322 mulcomnqg 7324 addcomsrg 7696 mulcomsrg 7698 axmulcom 7812 |
Copyright terms: Public domain | W3C validator |