ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecovicom Unicode version

Theorem ecovicom 6621
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.)
Hypotheses
Ref Expression
ecovicom.1  |-  C  =  ( ( S  X.  S ) /.  .~  )
ecovicom.2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )
ecovicom.3  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
ecovicom.4  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  ->  D  =  H )
ecovicom.5  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  ->  G  =  J )
Assertion
Ref Expression
ecovicom  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A  .+  B
)  =  ( B 
.+  A ) )
Distinct variable groups:    x, y, z, w, A    z, B, w    x,  .+ , y, z, w    x,  .~ , y, z, w    x, S, y, z, w    z, C, w
Allowed substitution hints:    B( x, y)    C( x, y)    D( x, y, z, w)    G( x, y, z, w)    H( x, y, z, w)    J( x, y, z, w)

Proof of Theorem ecovicom
StepHypRef Expression
1 ecovicom.1 . 2  |-  C  =  ( ( S  X.  S ) /.  .~  )
2 oveq1 5860 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( A  .+  [ <. z ,  w >. ]  .~  ) )
3 oveq2 5861 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A
) )
42, 3eqeq12d 2185 . 2  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  <->  ( A  .+  [ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A ) ) )
5 oveq2 5861 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( A  .+  [ <. z ,  w >. ]  .~  )  =  ( A  .+  B ) )
6 oveq1 5860 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( [ <. z ,  w >. ]  .~  .+  A )  =  ( B  .+  A ) )
75, 6eqeq12d 2185 . 2  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( ( A  .+  [
<. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A
)  <->  ( A  .+  B )  =  ( B  .+  A ) ) )
8 ecovicom.4 . . . 4  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  ->  D  =  H )
9 ecovicom.5 . . . 4  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  ->  G  =  J )
10 opeq12 3767 . . . . 5  |-  ( ( D  =  H  /\  G  =  J )  -> 
<. D ,  G >.  = 
<. H ,  J >. )
1110eceq1d 6549 . . . 4  |-  ( ( D  =  H  /\  G  =  J )  ->  [ <. D ,  G >. ]  .~  =  [ <. H ,  J >. ]  .~  )
128, 9, 11syl2anc 409 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  ->  [ <. D ,  G >. ]  .~  =  [ <. H ,  J >. ]  .~  )
13 ecovicom.2 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )
14 ecovicom.3 . . . 4  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
1514ancoms 266 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
1612, 13, 153eqtr4d 2213 . 2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  ) )
171, 4, 7, 162ecoptocl 6601 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A  .+  B
)  =  ( B 
.+  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   <.cop 3586    X. cxp 4609  (class class class)co 5853   [cec 6511   /.cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fv 5206  df-ov 5856  df-ec 6515  df-qs 6519
This theorem is referenced by:  addcomnqg  7343  mulcomnqg  7345  addcomsrg  7717  mulcomsrg  7719  axmulcom  7833
  Copyright terms: Public domain W3C validator