ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetec Unicode version

Theorem xmetec 15111
Description: The equivalence classes under the finite separation equivalence relation are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1  |-  .~  =  ( `' D " RR )
Assertion
Ref Expression
xmetec  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  [ P ]  .~  =  ( P ( ball `  D
) +oo ) )

Proof of Theorem xmetec
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5  |-  .~  =  ( `' D " RR )
21xmeterval 15109 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( P  .~  x  <->  ( P  e.  X  /\  x  e.  X  /\  ( P D x )  e.  RR ) ) )
3 3anass 1006 . . . . 5  |-  ( ( P  e.  X  /\  x  e.  X  /\  ( P D x )  e.  RR )  <->  ( P  e.  X  /\  (
x  e.  X  /\  ( P D x )  e.  RR ) ) )
43baib 924 . . . 4  |-  ( P  e.  X  ->  (
( P  e.  X  /\  x  e.  X  /\  ( P D x )  e.  RR )  <-> 
( x  e.  X  /\  ( P D x )  e.  RR ) ) )
52, 4sylan9bb 462 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( P  .~  x  <->  ( x  e.  X  /\  ( P D x )  e.  RR ) ) )
6 vex 2802 . . . . 5  |-  x  e. 
_V
76a1i 9 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  x  e.  _V )
8 elecg 6720 . . . 4  |-  ( ( x  e.  _V  /\  P  e.  X )  ->  ( x  e.  [ P ]  .~  <->  P  .~  x ) )
97, 8sylan 283 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( x  e.  [ P ]  .~  <->  P  .~  x ) )
10 xblpnf 15073 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( x  e.  ( P ( ball `  D ) +oo )  <->  ( x  e.  X  /\  ( P D x )  e.  RR ) ) )
115, 9, 103bitr4d 220 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( x  e.  [ P ]  .~  <->  x  e.  ( P (
ball `  D ) +oo ) ) )
1211eqrdv 2227 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  [ P ]  .~  =  ( P ( ball `  D
) +oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   class class class wbr 4083   `'ccnv 4718   "cima 4722   ` cfv 5318  (class class class)co 6001   [cec 6678   RRcr 7998   +oocpnf 8178   *Metcxmet 14500   ballcbl 14502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-ec 6682  df-map 6797  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-2 9169  df-xadd 9969  df-psmet 14507  df-xmet 14508  df-bl 14510
This theorem is referenced by:  blssec  15112  blpnfctr  15113
  Copyright terms: Public domain W3C validator