ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blpnfctr Unicode version

Theorem blpnfctr 14675
Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
blpnfctr  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( P ( ball `  D ) +oo )  =  ( A (
ball `  D ) +oo ) )

Proof of Theorem blpnfctr
StepHypRef Expression
1 eqid 2196 . . . . 5  |-  ( `' D " RR )  =  ( `' D " RR )
21xmeter 14672 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( `' D " RR )  Er  X )
323ad2ant1 1020 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( `' D " RR )  Er  X
)
4 simp3 1001 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  A  e.  ( P
( ball `  D ) +oo ) )
51xmetec 14673 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  [ P ] ( `' D " RR )  =  ( P ( ball `  D
) +oo ) )
653adant3 1019 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  [ P ] ( `' D " RR )  =  ( P (
ball `  D ) +oo ) )
74, 6eleqtrrd 2276 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  A  e.  [ P ] ( `' D " RR ) )
8 elecg 6632 . . . . . 6  |-  ( ( A  e.  ( P ( ball `  D
) +oo )  /\  P  e.  X )  ->  ( A  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) A ) )
98ancoms 268 . . . . 5  |-  ( ( P  e.  X  /\  A  e.  ( P
( ball `  D ) +oo ) )  ->  ( A  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) A ) )
1093adant1 1017 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( A  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) A ) )
117, 10mpbid 147 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  P ( `' D " RR ) A )
123, 11erthi 6640 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  [ P ] ( `' D " RR )  =  [ A ]
( `' D " RR ) )
13 pnfxr 8079 . . . . . 6  |- +oo  e.  RR*
14 blssm 14657 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\ +oo  e.  RR* )  ->  ( P ( ball `  D ) +oo )  C_  X )
1513, 14mp3an3 1337 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( P
( ball `  D ) +oo )  C_  X )
1615sselda 3183 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  ( P ( ball `  D ) +oo )
)  ->  A  e.  X )
171xmetec 14673 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X
)  ->  [ A ] ( `' D " RR )  =  ( A ( ball `  D
) +oo ) )
1817adantlr 477 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  X )  ->  [ A ] ( `' D " RR )  =  ( A ( ball `  D
) +oo ) )
1916, 18syldan 282 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  ( P ( ball `  D ) +oo )
)  ->  [ A ] ( `' D " RR )  =  ( A ( ball `  D
) +oo ) )
20193impa 1196 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  [ A ] ( `' D " RR )  =  ( A (
ball `  D ) +oo ) )
2112, 6, 203eqtr3d 2237 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( P ( ball `  D ) +oo )  =  ( A (
ball `  D ) +oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   class class class wbr 4033   `'ccnv 4662   "cima 4666   ` cfv 5258  (class class class)co 5922    Er wer 6589   [cec 6590   RRcr 7878   +oocpnf 8058   RR*cxr 8060   *Metcxmet 14092   ballcbl 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-er 6592  df-ec 6594  df-map 6709  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-2 9049  df-xadd 9848  df-psmet 14099  df-xmet 14100  df-bl 14102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator