ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blpnfctr Unicode version

Theorem blpnfctr 14607
Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
blpnfctr  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( P ( ball `  D ) +oo )  =  ( A (
ball `  D ) +oo ) )

Proof of Theorem blpnfctr
StepHypRef Expression
1 eqid 2193 . . . . 5  |-  ( `' D " RR )  =  ( `' D " RR )
21xmeter 14604 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( `' D " RR )  Er  X )
323ad2ant1 1020 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( `' D " RR )  Er  X
)
4 simp3 1001 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  A  e.  ( P
( ball `  D ) +oo ) )
51xmetec 14605 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  [ P ] ( `' D " RR )  =  ( P ( ball `  D
) +oo ) )
653adant3 1019 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  [ P ] ( `' D " RR )  =  ( P (
ball `  D ) +oo ) )
74, 6eleqtrrd 2273 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  A  e.  [ P ] ( `' D " RR ) )
8 elecg 6627 . . . . . 6  |-  ( ( A  e.  ( P ( ball `  D
) +oo )  /\  P  e.  X )  ->  ( A  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) A ) )
98ancoms 268 . . . . 5  |-  ( ( P  e.  X  /\  A  e.  ( P
( ball `  D ) +oo ) )  ->  ( A  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) A ) )
1093adant1 1017 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( A  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) A ) )
117, 10mpbid 147 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  P ( `' D " RR ) A )
123, 11erthi 6635 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  [ P ] ( `' D " RR )  =  [ A ]
( `' D " RR ) )
13 pnfxr 8072 . . . . . 6  |- +oo  e.  RR*
14 blssm 14589 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\ +oo  e.  RR* )  ->  ( P ( ball `  D ) +oo )  C_  X )
1513, 14mp3an3 1337 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( P
( ball `  D ) +oo )  C_  X )
1615sselda 3179 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  ( P ( ball `  D ) +oo )
)  ->  A  e.  X )
171xmetec 14605 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X
)  ->  [ A ] ( `' D " RR )  =  ( A ( ball `  D
) +oo ) )
1817adantlr 477 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  X )  ->  [ A ] ( `' D " RR )  =  ( A ( ball `  D
) +oo ) )
1916, 18syldan 282 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  ( P ( ball `  D ) +oo )
)  ->  [ A ] ( `' D " RR )  =  ( A ( ball `  D
) +oo ) )
20193impa 1196 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  [ A ] ( `' D " RR )  =  ( A (
ball `  D ) +oo ) )
2112, 6, 203eqtr3d 2234 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( P ( ball `  D ) +oo )  =  ( A (
ball `  D ) +oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3153   class class class wbr 4029   `'ccnv 4658   "cima 4662   ` cfv 5254  (class class class)co 5918    Er wer 6584   [cec 6585   RRcr 7871   +oocpnf 8051   RR*cxr 8053   *Metcxmet 14032   ballcbl 14034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-er 6587  df-ec 6589  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-2 9041  df-xadd 9839  df-psmet 14039  df-xmet 14040  df-bl 14042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator