ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blpnfctr Unicode version

Theorem blpnfctr 13079
Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
blpnfctr  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( P ( ball `  D ) +oo )  =  ( A (
ball `  D ) +oo ) )

Proof of Theorem blpnfctr
StepHypRef Expression
1 eqid 2165 . . . . 5  |-  ( `' D " RR )  =  ( `' D " RR )
21xmeter 13076 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( `' D " RR )  Er  X )
323ad2ant1 1008 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( `' D " RR )  Er  X
)
4 simp3 989 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  A  e.  ( P
( ball `  D ) +oo ) )
51xmetec 13077 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  [ P ] ( `' D " RR )  =  ( P ( ball `  D
) +oo ) )
653adant3 1007 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  [ P ] ( `' D " RR )  =  ( P (
ball `  D ) +oo ) )
74, 6eleqtrrd 2246 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  A  e.  [ P ] ( `' D " RR ) )
8 elecg 6539 . . . . . 6  |-  ( ( A  e.  ( P ( ball `  D
) +oo )  /\  P  e.  X )  ->  ( A  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) A ) )
98ancoms 266 . . . . 5  |-  ( ( P  e.  X  /\  A  e.  ( P
( ball `  D ) +oo ) )  ->  ( A  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) A ) )
1093adant1 1005 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( A  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) A ) )
117, 10mpbid 146 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  P ( `' D " RR ) A )
123, 11erthi 6547 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  [ P ] ( `' D " RR )  =  [ A ]
( `' D " RR ) )
13 pnfxr 7951 . . . . . 6  |- +oo  e.  RR*
14 blssm 13061 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\ +oo  e.  RR* )  ->  ( P ( ball `  D ) +oo )  C_  X )
1513, 14mp3an3 1316 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( P
( ball `  D ) +oo )  C_  X )
1615sselda 3142 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  ( P ( ball `  D ) +oo )
)  ->  A  e.  X )
171xmetec 13077 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X
)  ->  [ A ] ( `' D " RR )  =  ( A ( ball `  D
) +oo ) )
1817adantlr 469 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  X )  ->  [ A ] ( `' D " RR )  =  ( A ( ball `  D
) +oo ) )
1916, 18syldan 280 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  ( P ( ball `  D ) +oo )
)  ->  [ A ] ( `' D " RR )  =  ( A ( ball `  D
) +oo ) )
20193impa 1184 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  ->  [ A ] ( `' D " RR )  =  ( A (
ball `  D ) +oo ) )
2112, 6, 203eqtr3d 2206 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D
) +oo ) )  -> 
( P ( ball `  D ) +oo )  =  ( A (
ball `  D ) +oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    C_ wss 3116   class class class wbr 3982   `'ccnv 4603   "cima 4607   ` cfv 5188  (class class class)co 5842    Er wer 6498   [cec 6499   RRcr 7752   +oocpnf 7930   RR*cxr 7932   *Metcxmet 12620   ballcbl 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-er 6501  df-ec 6503  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-2 8916  df-xadd 9709  df-psmet 12627  df-xmet 12628  df-bl 12630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator