ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvopab6 Unicode version

Theorem fvopab6 5582
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvopab6.1  |-  F  =  { <. x ,  y
>.  |  ( ph  /\  y  =  B ) }
fvopab6.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
fvopab6.3  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
fvopab6  |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `
 A )  =  C )
Distinct variable groups:    x, A, y    ps, x, y    y, B   
x, C, y
Allowed substitution hints:    ph( x, y)    B( x)    D( x, y)    R( x, y)    F( x, y)

Proof of Theorem fvopab6
StepHypRef Expression
1 elex 2737 . . 3  |-  ( A  e.  D  ->  A  e.  _V )
2 fvopab6.2 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
3 fvopab6.3 . . . . . 6  |-  ( x  =  A  ->  B  =  C )
43eqeq2d 2177 . . . . 5  |-  ( x  =  A  ->  (
y  =  B  <->  y  =  C ) )
52, 4anbi12d 465 . . . 4  |-  ( x  =  A  ->  (
( ph  /\  y  =  B )  <->  ( ps  /\  y  =  C ) ) )
6 iba 298 . . . . 5  |-  ( y  =  C  ->  ( ps 
<->  ( ps  /\  y  =  C ) ) )
76bicomd 140 . . . 4  |-  ( y  =  C  ->  (
( ps  /\  y  =  C )  <->  ps )
)
8 moeq 2901 . . . . . 6  |-  E* y 
y  =  B
98moani 2084 . . . . 5  |-  E* y
( ph  /\  y  =  B )
109a1i 9 . . . 4  |-  ( x  e.  _V  ->  E* y ( ph  /\  y  =  B )
)
11 fvopab6.1 . . . . 5  |-  F  =  { <. x ,  y
>.  |  ( ph  /\  y  =  B ) }
12 vex 2729 . . . . . . 7  |-  x  e. 
_V
1312biantrur 301 . . . . . 6  |-  ( (
ph  /\  y  =  B )  <->  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) )
1413opabbii 4049 . . . . 5  |-  { <. x ,  y >.  |  (
ph  /\  y  =  B ) }  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) }
1511, 14eqtri 2186 . . . 4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) }
165, 7, 10, 15fvopab3ig 5560 . . 3  |-  ( ( A  e.  _V  /\  C  e.  R )  ->  ( ps  ->  ( F `  A )  =  C ) )
171, 16sylan 281 . 2  |-  ( ( A  e.  D  /\  C  e.  R )  ->  ( ps  ->  ( F `  A )  =  C ) )
18173impia 1190 1  |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `
 A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343   E*wmo 2015    e. wcel 2136   _Vcvv 2726   {copab 4042   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator