ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvopab6 Unicode version

Theorem fvopab6 5678
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvopab6.1  |-  F  =  { <. x ,  y
>.  |  ( ph  /\  y  =  B ) }
fvopab6.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
fvopab6.3  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
fvopab6  |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `
 A )  =  C )
Distinct variable groups:    x, A, y    ps, x, y    y, B   
x, C, y
Allowed substitution hints:    ph( x, y)    B( x)    D( x, y)    R( x, y)    F( x, y)

Proof of Theorem fvopab6
StepHypRef Expression
1 elex 2783 . . 3  |-  ( A  e.  D  ->  A  e.  _V )
2 fvopab6.2 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
3 fvopab6.3 . . . . . 6  |-  ( x  =  A  ->  B  =  C )
43eqeq2d 2217 . . . . 5  |-  ( x  =  A  ->  (
y  =  B  <->  y  =  C ) )
52, 4anbi12d 473 . . . 4  |-  ( x  =  A  ->  (
( ph  /\  y  =  B )  <->  ( ps  /\  y  =  C ) ) )
6 iba 300 . . . . 5  |-  ( y  =  C  ->  ( ps 
<->  ( ps  /\  y  =  C ) ) )
76bicomd 141 . . . 4  |-  ( y  =  C  ->  (
( ps  /\  y  =  C )  <->  ps )
)
8 moeq 2948 . . . . . 6  |-  E* y 
y  =  B
98moani 2124 . . . . 5  |-  E* y
( ph  /\  y  =  B )
109a1i 9 . . . 4  |-  ( x  e.  _V  ->  E* y ( ph  /\  y  =  B )
)
11 fvopab6.1 . . . . 5  |-  F  =  { <. x ,  y
>.  |  ( ph  /\  y  =  B ) }
12 vex 2775 . . . . . . 7  |-  x  e. 
_V
1312biantrur 303 . . . . . 6  |-  ( (
ph  /\  y  =  B )  <->  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) )
1413opabbii 4112 . . . . 5  |-  { <. x ,  y >.  |  (
ph  /\  y  =  B ) }  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) }
1511, 14eqtri 2226 . . . 4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) }
165, 7, 10, 15fvopab3ig 5655 . . 3  |-  ( ( A  e.  _V  /\  C  e.  R )  ->  ( ps  ->  ( F `  A )  =  C ) )
171, 16sylan 283 . 2  |-  ( ( A  e.  D  /\  C  e.  R )  ->  ( ps  ->  ( F `  A )  =  C ) )
18173impia 1203 1  |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `
 A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E*wmo 2055    e. wcel 2176   _Vcvv 2772   {copab 4105   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator