ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmpod Unicode version

Theorem elovmpod 6121
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 6122 in deduction form. (Revised by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
elovmpod.o  |-  O  =  ( a  e.  A ,  b  e.  B  |->  C )
elovmpod.x  |-  ( ph  ->  X  e.  A )
elovmpod.y  |-  ( ph  ->  Y  e.  B )
elovmpod.d  |-  ( ph  ->  D  e.  V )
elovmpod.c  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  D )
Assertion
Ref Expression
elovmpod  |-  ( ph  ->  ( E  e.  ( X O Y )  <-> 
E  e.  D ) )
Distinct variable groups:    D, a, b    X, a, b    Y, a, b    ph, a, b
Allowed substitution hints:    A( a, b)    B( a, b)    C( a, b)    E( a, b)    O( a, b)    V( a, b)

Proof of Theorem elovmpod
StepHypRef Expression
1 elovmpod.o . . . 4  |-  O  =  ( a  e.  A ,  b  e.  B  |->  C )
21a1i 9 . . 3  |-  ( ph  ->  O  =  ( a  e.  A ,  b  e.  B  |->  C ) )
3 elovmpod.c . . . 4  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  D )
43adantl 277 . . 3  |-  ( (
ph  /\  ( a  =  X  /\  b  =  Y ) )  ->  C  =  D )
5 elovmpod.x . . 3  |-  ( ph  ->  X  e.  A )
6 elovmpod.y . . 3  |-  ( ph  ->  Y  e.  B )
7 elovmpod.d . . 3  |-  ( ph  ->  D  e.  V )
82, 4, 5, 6, 7ovmpod 6050 . 2  |-  ( ph  ->  ( X O Y )  =  D )
98eleq2d 2266 1  |-  ( ph  ->  ( E  e.  ( X O Y )  <-> 
E  e.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167  (class class class)co 5922    e. cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator