ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmpod Unicode version

Theorem elovmpod 6202
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 6203 in deduction form. (Revised by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
elovmpod.o  |-  O  =  ( a  e.  A ,  b  e.  B  |->  C )
elovmpod.x  |-  ( ph  ->  X  e.  A )
elovmpod.y  |-  ( ph  ->  Y  e.  B )
elovmpod.d  |-  ( ph  ->  D  e.  V )
elovmpod.c  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  D )
Assertion
Ref Expression
elovmpod  |-  ( ph  ->  ( E  e.  ( X O Y )  <-> 
E  e.  D ) )
Distinct variable groups:    D, a, b    X, a, b    Y, a, b    ph, a, b
Allowed substitution hints:    A( a, b)    B( a, b)    C( a, b)    E( a, b)    O( a, b)    V( a, b)

Proof of Theorem elovmpod
StepHypRef Expression
1 elovmpod.o . . . 4  |-  O  =  ( a  e.  A ,  b  e.  B  |->  C )
21a1i 9 . . 3  |-  ( ph  ->  O  =  ( a  e.  A ,  b  e.  B  |->  C ) )
3 elovmpod.c . . . 4  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  D )
43adantl 277 . . 3  |-  ( (
ph  /\  ( a  =  X  /\  b  =  Y ) )  ->  C  =  D )
5 elovmpod.x . . 3  |-  ( ph  ->  X  e.  A )
6 elovmpod.y . . 3  |-  ( ph  ->  Y  e.  B )
7 elovmpod.d . . 3  |-  ( ph  ->  D  e.  V )
82, 4, 5, 6, 7ovmpod 6131 . 2  |-  ( ph  ->  ( X O Y )  =  D )
98eleq2d 2299 1  |-  ( ph  ->  ( E  e.  ( X O Y )  <-> 
E  e.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200  (class class class)co 6000    e. cmpo 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator