ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmpod Unicode version

Theorem elovmpod 6167
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 6168 in deduction form. (Revised by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
elovmpod.o  |-  O  =  ( a  e.  A ,  b  e.  B  |->  C )
elovmpod.x  |-  ( ph  ->  X  e.  A )
elovmpod.y  |-  ( ph  ->  Y  e.  B )
elovmpod.d  |-  ( ph  ->  D  e.  V )
elovmpod.c  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  D )
Assertion
Ref Expression
elovmpod  |-  ( ph  ->  ( E  e.  ( X O Y )  <-> 
E  e.  D ) )
Distinct variable groups:    D, a, b    X, a, b    Y, a, b    ph, a, b
Allowed substitution hints:    A( a, b)    B( a, b)    C( a, b)    E( a, b)    O( a, b)    V( a, b)

Proof of Theorem elovmpod
StepHypRef Expression
1 elovmpod.o . . . 4  |-  O  =  ( a  e.  A ,  b  e.  B  |->  C )
21a1i 9 . . 3  |-  ( ph  ->  O  =  ( a  e.  A ,  b  e.  B  |->  C ) )
3 elovmpod.c . . . 4  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  D )
43adantl 277 . . 3  |-  ( (
ph  /\  ( a  =  X  /\  b  =  Y ) )  ->  C  =  D )
5 elovmpod.x . . 3  |-  ( ph  ->  X  e.  A )
6 elovmpod.y . . 3  |-  ( ph  ->  Y  e.  B )
7 elovmpod.d . . 3  |-  ( ph  ->  D  e.  V )
82, 4, 5, 6, 7ovmpod 6096 . 2  |-  ( ph  ->  ( X O Y )  =  D )
98eleq2d 2277 1  |-  ( ph  ->  ( E  e.  ( X O Y )  <-> 
E  e.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178  (class class class)co 5967    e. cmpo 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator