ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmpocl2 Unicode version

Theorem elmpocl2 6145
Description: If a two-parameter class is inhabited, the second argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpocl.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
elmpocl2  |-  ( X  e.  ( S F T )  ->  T  e.  B )
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    S( x, y)    T( x, y)    F( x, y)    X( x, y)

Proof of Theorem elmpocl2
StepHypRef Expression
1 elmpocl.f . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21elmpocl 6143 . 2  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
32simprd 114 1  |-  ( X  e.  ( S F T )  ->  T  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176  (class class class)co 5946    e. cmpo 5948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951
This theorem is referenced by:  iccssico2  10071  elfzoel2  10270  mhmrcl2  13329  rhmrcl2  13951  cncfrss2  15081
  Copyright terms: Public domain W3C validator