![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elovmpod | GIF version |
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 6117 in deduction form. (Revised by AV, 20-Apr-2025.) |
Ref | Expression |
---|---|
elovmpod.o | ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
elovmpod.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
elovmpod.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
elovmpod.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
elovmpod.c | ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
elovmpod | ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpod.o | . . . 4 ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝜑 → 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)) |
3 | elovmpod.c | . . . 4 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) | |
4 | 3 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝑋 ∧ 𝑏 = 𝑌)) → 𝐶 = 𝐷) |
5 | elovmpod.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
6 | elovmpod.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | elovmpod.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
8 | 2, 4, 5, 6, 7 | ovmpod 6046 | . 2 ⊢ (𝜑 → (𝑋𝑂𝑌) = 𝐷) |
9 | 8 | eleq2d 2263 | 1 ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ∈ cmpo 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |