ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmpod GIF version

Theorem elovmpod 6118
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 6119 in deduction form. (Revised by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
elovmpod.o 𝑂 = (𝑎𝐴, 𝑏𝐵𝐶)
elovmpod.x (𝜑𝑋𝐴)
elovmpod.y (𝜑𝑌𝐵)
elovmpod.d (𝜑𝐷𝑉)
elovmpod.c ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐷)
Assertion
Ref Expression
elovmpod (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸𝐷))
Distinct variable groups:   𝐷,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐸(𝑎,𝑏)   𝑂(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem elovmpod
StepHypRef Expression
1 elovmpod.o . . . 4 𝑂 = (𝑎𝐴, 𝑏𝐵𝐶)
21a1i 9 . . 3 (𝜑𝑂 = (𝑎𝐴, 𝑏𝐵𝐶))
3 elovmpod.c . . . 4 ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐷)
43adantl 277 . . 3 ((𝜑 ∧ (𝑎 = 𝑋𝑏 = 𝑌)) → 𝐶 = 𝐷)
5 elovmpod.x . . 3 (𝜑𝑋𝐴)
6 elovmpod.y . . 3 (𝜑𝑌𝐵)
7 elovmpod.d . . 3 (𝜑𝐷𝑉)
82, 4, 5, 6, 7ovmpod 6047 . 2 (𝜑 → (𝑋𝑂𝑌) = 𝐷)
98eleq2d 2263 1 (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  (class class class)co 5919  cmpo 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator