ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpod Unicode version

Theorem ovmpod 6050
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
ovmpod.1  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
ovmpod.2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
ovmpod.3  |-  ( ph  ->  A  e.  C )
ovmpod.4  |-  ( ph  ->  B  e.  D )
ovmpod.5  |-  ( ph  ->  S  e.  X )
Assertion
Ref Expression
ovmpod  |-  ( ph  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, S, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)    R( x, y)    F( x, y)    X( x, y)

Proof of Theorem ovmpod
StepHypRef Expression
1 ovmpod.1 . 2  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
2 ovmpod.2 . 2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
3 eqidd 2197 . 2  |-  ( (
ph  /\  x  =  A )  ->  D  =  D )
4 ovmpod.3 . 2  |-  ( ph  ->  A  e.  C )
5 ovmpod.4 . 2  |-  ( ph  ->  B  e.  D )
6 ovmpod.5 . 2  |-  ( ph  ->  S  e.  X )
71, 2, 3, 4, 5, 6ovmpodx 6049 1  |-  ( ph  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5922    e. cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927
This theorem is referenced by:  ovmpoga  6052  fvmpopr2d  6059  elovmpod  6121  iseqovex  10550  seqvalcd  10553  resqrexlemp1rp  11171  resqrexlemfp1  11174  lcmval  12231  ennnfonelemg  12620  imasival  12949  qusval  12966  plusfvalg  13006  igsumvalx  13032  grpsubval  13178  mulgval  13252  dvrvald  13690  isrim0  13717  rhmval  13729  scafvalg  13863  rmodislmodlem  13906  rmodislmod  13907  psrval  14220  cnfval  14430  cnpfval  14431  blvalps  14624  blval  14625
  Copyright terms: Public domain W3C validator