| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpod | Unicode version | ||
| Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovmpod.1 |
|
| ovmpod.2 |
|
| ovmpod.3 |
|
| ovmpod.4 |
|
| ovmpod.5 |
|
| Ref | Expression |
|---|---|
| ovmpod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpod.1 |
. 2
| |
| 2 | ovmpod.2 |
. 2
| |
| 3 | eqidd 2206 |
. 2
| |
| 4 | ovmpod.3 |
. 2
| |
| 5 | ovmpod.4 |
. 2
| |
| 6 | ovmpod.5 |
. 2
| |
| 7 | 1, 2, 3, 4, 5, 6 | ovmpodx 6072 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 |
| This theorem is referenced by: ovmpoga 6075 fvmpopr2d 6082 elovmpod 6144 iseqovex 10603 seqvalcd 10606 swrdval 11101 resqrexlemp1rp 11317 resqrexlemfp1 11320 lcmval 12385 ennnfonelemg 12774 prdsval 13105 prdsplusgval 13115 prdsmulrval 13117 imasival 13138 qusval 13155 plusfvalg 13195 igsumvalx 13221 grpsubval 13378 mulgval 13458 dvrvald 13896 isrim0 13923 rhmval 13935 scafvalg 14069 rmodislmodlem 14112 rmodislmod 14113 psrval 14428 cnfval 14666 cnpfval 14667 blvalps 14860 blval 14861 |
| Copyright terms: Public domain | W3C validator |