| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpod | Unicode version | ||
| Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovmpod.1 |
|
| ovmpod.2 |
|
| ovmpod.3 |
|
| ovmpod.4 |
|
| ovmpod.5 |
|
| Ref | Expression |
|---|---|
| ovmpod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpod.1 |
. 2
| |
| 2 | ovmpod.2 |
. 2
| |
| 3 | eqidd 2230 |
. 2
| |
| 4 | ovmpod.3 |
. 2
| |
| 5 | ovmpod.4 |
. 2
| |
| 6 | ovmpod.5 |
. 2
| |
| 7 | 1, 2, 3, 4, 5, 6 | ovmpodx 6130 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 |
| This theorem is referenced by: ovmpoga 6133 fvmpopr2d 6140 elovmpod 6202 iseqovex 10675 seqvalcd 10678 swrdval 11175 pfxval 11201 resqrexlemp1rp 11512 resqrexlemfp1 11515 lcmval 12580 ennnfonelemg 12969 prdsval 13301 prdsplusgval 13311 prdsmulrval 13313 imasival 13334 qusval 13351 plusfvalg 13391 igsumvalx 13417 grpsubval 13574 mulgval 13654 dvrvald 14092 isrim0 14119 rhmval 14131 scafvalg 14265 rmodislmodlem 14308 rmodislmod 14309 psrval 14624 cnfval 14862 cnpfval 14863 blvalps 15056 blval 15057 |
| Copyright terms: Public domain | W3C validator |