| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpod | Unicode version | ||
| Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovmpod.1 |
|
| ovmpod.2 |
|
| ovmpod.3 |
|
| ovmpod.4 |
|
| ovmpod.5 |
|
| Ref | Expression |
|---|---|
| ovmpod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpod.1 |
. 2
| |
| 2 | ovmpod.2 |
. 2
| |
| 3 | eqidd 2208 |
. 2
| |
| 4 | ovmpod.3 |
. 2
| |
| 5 | ovmpod.4 |
. 2
| |
| 6 | ovmpod.5 |
. 2
| |
| 7 | 1, 2, 3, 4, 5, 6 | ovmpodx 6095 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 |
| This theorem is referenced by: ovmpoga 6098 fvmpopr2d 6105 elovmpod 6167 iseqovex 10640 seqvalcd 10643 swrdval 11139 pfxval 11165 resqrexlemp1rp 11432 resqrexlemfp1 11435 lcmval 12500 ennnfonelemg 12889 prdsval 13220 prdsplusgval 13230 prdsmulrval 13232 imasival 13253 qusval 13270 plusfvalg 13310 igsumvalx 13336 grpsubval 13493 mulgval 13573 dvrvald 14011 isrim0 14038 rhmval 14050 scafvalg 14184 rmodislmodlem 14227 rmodislmod 14228 psrval 14543 cnfval 14781 cnpfval 14782 blvalps 14975 blval 14976 |
| Copyright terms: Public domain | W3C validator |