ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpod Unicode version

Theorem ovmpod 5852
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
ovmpod.1  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
ovmpod.2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
ovmpod.3  |-  ( ph  ->  A  e.  C )
ovmpod.4  |-  ( ph  ->  B  e.  D )
ovmpod.5  |-  ( ph  ->  S  e.  X )
Assertion
Ref Expression
ovmpod  |-  ( ph  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, S, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)    R( x, y)    F( x, y)    X( x, y)

Proof of Theorem ovmpod
StepHypRef Expression
1 ovmpod.1 . 2  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
2 ovmpod.2 . 2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
3 eqidd 2116 . 2  |-  ( (
ph  /\  x  =  A )  ->  D  =  D )
4 ovmpod.3 . 2  |-  ( ph  ->  A  e.  C )
5 ovmpod.4 . 2  |-  ( ph  ->  B  e.  D )
6 ovmpod.5 . 2  |-  ( ph  ->  S  e.  X )
71, 2, 3, 4, 5, 6ovmpodx 5851 1  |-  ( ph  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463  (class class class)co 5728    e. cmpo 5730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733
This theorem is referenced by:  ovmpoga  5854  iseqovex  10122  seqvalcd  10125  resqrexlemp1rp  10670  resqrexlemfp1  10673  lcmval  11590  ennnfonelemg  11761  cnfval  12206  cnpfval  12207  blvalps  12377  blval  12378
  Copyright terms: Public domain W3C validator