ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpod Unicode version

Theorem ovmpod 5980
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
ovmpod.1  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
ovmpod.2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
ovmpod.3  |-  ( ph  ->  A  e.  C )
ovmpod.4  |-  ( ph  ->  B  e.  D )
ovmpod.5  |-  ( ph  ->  S  e.  X )
Assertion
Ref Expression
ovmpod  |-  ( ph  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, S, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)    R( x, y)    F( x, y)    X( x, y)

Proof of Theorem ovmpod
StepHypRef Expression
1 ovmpod.1 . 2  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
2 ovmpod.2 . 2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
3 eqidd 2171 . 2  |-  ( (
ph  /\  x  =  A )  ->  D  =  D )
4 ovmpod.3 . 2  |-  ( ph  ->  A  e.  C )
5 ovmpod.4 . 2  |-  ( ph  ->  B  e.  D )
6 ovmpod.5 . 2  |-  ( ph  ->  S  e.  X )
71, 2, 3, 4, 5, 6ovmpodx 5979 1  |-  ( ph  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141  (class class class)co 5853    e. cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858
This theorem is referenced by:  ovmpoga  5982  iseqovex  10412  seqvalcd  10415  resqrexlemp1rp  10970  resqrexlemfp1  10973  lcmval  12017  ennnfonelemg  12358  plusfvalg  12617  grpsubval  12749  cnfval  12988  cnpfval  12989  blvalps  13182  blval  13183
  Copyright terms: Public domain W3C validator