![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrn2 | GIF version |
Description: Membership in a range. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
elrn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elrn2 | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opeq2 3623 | . . . 4 ⊢ (𝑦 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝐴〉) | |
3 | 2 | eleq1d 2156 | . . 3 ⊢ (𝑦 = 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐵 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
4 | 3 | exbidv 1753 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) |
5 | dfrn3 4625 | . 2 ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐵} | |
6 | 1, 4, 5 | elab2 2763 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 = wceq 1289 ∃wex 1426 ∈ wcel 1438 Vcvv 2619 〈cop 3449 ran crn 4439 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-cnv 4446 df-dm 4448 df-rn 4449 |
This theorem is referenced by: elrn 4678 dmrnssfld 4696 rniun 4842 rnxpid 4865 ssrnres 4873 relssdmrn 4951 |
Copyright terms: Public domain | W3C validator |