![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrn2 | GIF version |
Description: Membership in a range. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
elrn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elrn2 | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥⟨𝑥, 𝐴⟩ ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opeq2 3781 | . . . 4 ⊢ (𝑦 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐴⟩) | |
3 | 2 | eleq1d 2246 | . . 3 ⊢ (𝑦 = 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
4 | 3 | exbidv 1825 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑥⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
5 | dfrn3 4818 | . 2 ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐵} | |
6 | 1, 4, 5 | elab2 2887 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥⟨𝑥, 𝐴⟩ ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 ran crn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-cnv 4636 df-dm 4638 df-rn 4639 |
This theorem is referenced by: elrn 4872 dmrnssfld 4892 rniun 5041 rnxpid 5065 ssrnres 5073 relssdmrn 5151 |
Copyright terms: Public domain | W3C validator |