ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltop3 Unicode version

Theorem eltop3 12076
Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
eltop3  |-  ( J  e.  Top  ->  ( A  e.  J  <->  E. x
( x  C_  J  /\  A  =  U. x ) ) )
Distinct variable groups:    x, A    x, J

Proof of Theorem eltop3
StepHypRef Expression
1 tgtop 12073 . . 3  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
21eleq2d 2182 . 2  |-  ( J  e.  Top  ->  ( A  e.  ( topGen `  J )  <->  A  e.  J ) )
3 eltg3 12062 . 2  |-  ( J  e.  Top  ->  ( A  e.  ( topGen `  J )  <->  E. x
( x  C_  J  /\  A  =  U. x ) ) )
42, 3bitr3d 189 1  |-  ( J  e.  Top  ->  ( A  e.  J  <->  E. x
( x  C_  J  /\  A  =  U. x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1312   E.wex 1449    e. wcel 1461    C_ wss 3035   U.cuni 3700   ` cfv 5079   topGenctg 11971   Topctop 12000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-topgen 11977  df-top 12001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator