ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltop3 GIF version

Theorem eltop3 14730
Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
eltop3 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∃𝑥(𝑥𝐽𝐴 = 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽

Proof of Theorem eltop3
StepHypRef Expression
1 tgtop 14727 . . 3 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
21eleq2d 2299 . 2 (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴𝐽))
3 eltg3 14716 . 2 (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ ∃𝑥(𝑥𝐽𝐴 = 𝑥)))
42, 3bitr3d 190 1 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∃𝑥(𝑥𝐽𝐴 = 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wss 3197   cuni 3887  cfv 5314  topGenctg 13273  Topctop 14656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-topgen 13279  df-top 14657
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator