| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltop3 | GIF version | ||
| Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
| Ref | Expression |
|---|---|
| eltop3 | ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∃𝑥(𝑥 ⊆ 𝐽 ∧ 𝐴 = ∪ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgtop 14610 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 2 | 1 | eleq2d 2276 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴 ∈ 𝐽)) |
| 3 | eltg3 14599 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ ∃𝑥(𝑥 ⊆ 𝐽 ∧ 𝐴 = ∪ 𝑥))) | |
| 4 | 2, 3 | bitr3d 190 | 1 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∃𝑥(𝑥 ⊆ 𝐽 ∧ 𝐴 = ∪ 𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3170 ∪ cuni 3855 ‘cfv 5279 topGenctg 13156 Topctop 14539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-topgen 13162 df-top 14540 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |