| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eltg3 | Unicode version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| eltg3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-topgen 12931 | 
. . . . . . 7
 | |
| 2 | 1 | funmpt2 5297 | 
. . . . . 6
 | 
| 3 | funrel 5275 | 
. . . . . 6
 | |
| 4 | 2, 3 | ax-mp 5 | 
. . . . 5
 | 
| 5 | relelfvdm 5590 | 
. . . . 5
 | |
| 6 | 4, 5 | mpan 424 | 
. . . 4
 | 
| 7 | inex1g 4169 | 
. . . 4
 | |
| 8 | 6, 7 | syl 14 | 
. . 3
 | 
| 9 | eltg4i 14291 | 
. . 3
 | |
| 10 | inss1 3383 | 
. . . . . . 7
 | |
| 11 | sseq1 3206 | 
. . . . . . 7
 | |
| 12 | 10, 11 | mpbiri 168 | 
. . . . . 6
 | 
| 13 | 12 | biantrurd 305 | 
. . . . 5
 | 
| 14 | unieq 3848 | 
. . . . . 6
 | |
| 15 | 14 | eqeq2d 2208 | 
. . . . 5
 | 
| 16 | 13, 15 | bitr3d 190 | 
. . . 4
 | 
| 17 | 16 | spcegv 2852 | 
. . 3
 | 
| 18 | 8, 9, 17 | sylc 62 | 
. 2
 | 
| 19 | eltg3i 14292 | 
. . . . 5
 | |
| 20 | eleq1 2259 | 
. . . . 5
 | |
| 21 | 19, 20 | syl5ibrcom 157 | 
. . . 4
 | 
| 22 | 21 | expimpd 363 | 
. . 3
 | 
| 23 | 22 | exlimdv 1833 | 
. 2
 | 
| 24 | 18, 23 | impbid2 143 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-topgen 12931 | 
| This theorem is referenced by: tgval3 14294 tgtop 14304 eltop3 14307 tgidm 14310 bastop1 14319 tgrest 14405 tgcn 14444 txbasval 14503 | 
| Copyright terms: Public domain | W3C validator |