ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg3 Unicode version

Theorem eltg3 14500
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
eltg3  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  E. x
( x  C_  B  /\  A  =  U. x ) ) )
Distinct variable groups:    x, A    x, B    x, V

Proof of Theorem eltg3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-topgen 13063 . . . . . . 7  |-  topGen  =  ( x  e.  _V  |->  { y  |  y  C_  U. ( x  i^i  ~P y ) } )
21funmpt2 5309 . . . . . 6  |-  Fun  topGen
3 funrel 5287 . . . . . 6  |-  ( Fun  topGen  ->  Rel  topGen )
42, 3ax-mp 5 . . . . 5  |-  Rel  topGen
5 relelfvdm 5607 . . . . 5  |-  ( ( Rel  topGen  /\  A  e.  ( topGen `  B )
)  ->  B  e.  dom  topGen )
64, 5mpan 424 . . . 4  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
7 inex1g 4179 . . . 4  |-  ( B  e.  dom  topGen  ->  ( B  i^i  ~P A )  e.  _V )
86, 7syl 14 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  ( B  i^i  ~P A )  e. 
_V )
9 eltg4i 14498 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  A  =  U. ( B  i^i  ~P A ) )
10 inss1 3392 . . . . . . 7  |-  ( B  i^i  ~P A ) 
C_  B
11 sseq1 3215 . . . . . . 7  |-  ( x  =  ( B  i^i  ~P A )  ->  (
x  C_  B  <->  ( B  i^i  ~P A )  C_  B ) )
1210, 11mpbiri 168 . . . . . 6  |-  ( x  =  ( B  i^i  ~P A )  ->  x  C_  B )
1312biantrurd 305 . . . . 5  |-  ( x  =  ( B  i^i  ~P A )  ->  ( A  =  U. x  <->  ( x  C_  B  /\  A  =  U. x
) ) )
14 unieq 3858 . . . . . 6  |-  ( x  =  ( B  i^i  ~P A )  ->  U. x  =  U. ( B  i^i  ~P A ) )
1514eqeq2d 2216 . . . . 5  |-  ( x  =  ( B  i^i  ~P A )  ->  ( A  =  U. x  <->  A  =  U. ( B  i^i  ~P A ) ) )
1613, 15bitr3d 190 . . . 4  |-  ( x  =  ( B  i^i  ~P A )  ->  (
( x  C_  B  /\  A  =  U. x )  <->  A  =  U. ( B  i^i  ~P A ) ) )
1716spcegv 2860 . . 3  |-  ( ( B  i^i  ~P A
)  e.  _V  ->  ( A  =  U. ( B  i^i  ~P A )  ->  E. x ( x 
C_  B  /\  A  =  U. x ) ) )
188, 9, 17sylc 62 . 2  |-  ( A  e.  ( topGen `  B
)  ->  E. x
( x  C_  B  /\  A  =  U. x ) )
19 eltg3i 14499 . . . . 5  |-  ( ( B  e.  V  /\  x  C_  B )  ->  U. x  e.  ( topGen `
 B ) )
20 eleq1 2267 . . . . 5  |-  ( A  =  U. x  -> 
( A  e.  (
topGen `  B )  <->  U. x  e.  ( topGen `  B )
) )
2119, 20syl5ibrcom 157 . . . 4  |-  ( ( B  e.  V  /\  x  C_  B )  -> 
( A  =  U. x  ->  A  e.  (
topGen `  B ) ) )
2221expimpd 363 . . 3  |-  ( B  e.  V  ->  (
( x  C_  B  /\  A  =  U. x )  ->  A  e.  ( topGen `  B )
) )
2322exlimdv 1841 . 2  |-  ( B  e.  V  ->  ( E. x ( x  C_  B  /\  A  =  U. x )  ->  A  e.  ( topGen `  B )
) )
2418, 23impbid2 143 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  E. x
( x  C_  B  /\  A  =  U. x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175   {cab 2190   _Vcvv 2771    i^i cin 3164    C_ wss 3165   ~Pcpw 3615   U.cuni 3849   dom cdm 4674   Rel wrel 4679   Fun wfun 5264   ` cfv 5270   topGenctg 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-topgen 13063
This theorem is referenced by:  tgval3  14501  tgtop  14511  eltop3  14514  tgidm  14517  bastop1  14526  tgrest  14612  tgcn  14651  txbasval  14710
  Copyright terms: Public domain W3C validator