| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltg3 | Unicode version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| eltg3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topgen 12962 |
. . . . . . 7
| |
| 2 | 1 | funmpt2 5298 |
. . . . . 6
|
| 3 | funrel 5276 |
. . . . . 6
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . 5
|
| 5 | relelfvdm 5593 |
. . . . 5
| |
| 6 | 4, 5 | mpan 424 |
. . . 4
|
| 7 | inex1g 4170 |
. . . 4
| |
| 8 | 6, 7 | syl 14 |
. . 3
|
| 9 | eltg4i 14375 |
. . 3
| |
| 10 | inss1 3384 |
. . . . . . 7
| |
| 11 | sseq1 3207 |
. . . . . . 7
| |
| 12 | 10, 11 | mpbiri 168 |
. . . . . 6
|
| 13 | 12 | biantrurd 305 |
. . . . 5
|
| 14 | unieq 3849 |
. . . . . 6
| |
| 15 | 14 | eqeq2d 2208 |
. . . . 5
|
| 16 | 13, 15 | bitr3d 190 |
. . . 4
|
| 17 | 16 | spcegv 2852 |
. . 3
|
| 18 | 8, 9, 17 | sylc 62 |
. 2
|
| 19 | eltg3i 14376 |
. . . . 5
| |
| 20 | eleq1 2259 |
. . . . 5
| |
| 21 | 19, 20 | syl5ibrcom 157 |
. . . 4
|
| 22 | 21 | expimpd 363 |
. . 3
|
| 23 | 22 | exlimdv 1833 |
. 2
|
| 24 | 18, 23 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-topgen 12962 |
| This theorem is referenced by: tgval3 14378 tgtop 14388 eltop3 14391 tgidm 14394 bastop1 14403 tgrest 14489 tgcn 14528 txbasval 14587 |
| Copyright terms: Public domain | W3C validator |