Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltg3 | Unicode version |
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.) |
Ref | Expression |
---|---|
eltg3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topgen 12577 | . . . . . . 7 | |
2 | 1 | funmpt2 5227 | . . . . . 6 |
3 | funrel 5205 | . . . . . 6 | |
4 | 2, 3 | ax-mp 5 | . . . . 5 |
5 | relelfvdm 5518 | . . . . 5 | |
6 | 4, 5 | mpan 421 | . . . 4 |
7 | inex1g 4118 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | eltg4i 12695 | . . 3 | |
10 | inss1 3342 | . . . . . . 7 | |
11 | sseq1 3165 | . . . . . . 7 | |
12 | 10, 11 | mpbiri 167 | . . . . . 6 |
13 | 12 | biantrurd 303 | . . . . 5 |
14 | unieq 3798 | . . . . . 6 | |
15 | 14 | eqeq2d 2177 | . . . . 5 |
16 | 13, 15 | bitr3d 189 | . . . 4 |
17 | 16 | spcegv 2814 | . . 3 |
18 | 8, 9, 17 | sylc 62 | . 2 |
19 | eltg3i 12696 | . . . . 5 | |
20 | eleq1 2229 | . . . . 5 | |
21 | 19, 20 | syl5ibrcom 156 | . . . 4 |
22 | 21 | expimpd 361 | . . 3 |
23 | 22 | exlimdv 1807 | . 2 |
24 | 18, 23 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cab 2151 cvv 2726 cin 3115 wss 3116 cpw 3559 cuni 3789 cdm 4604 wrel 4609 wfun 5182 cfv 5188 ctg 12571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topgen 12577 |
This theorem is referenced by: tgval3 12698 tgtop 12708 eltop3 12711 tgidm 12714 bastop1 12723 tgrest 12809 tgcn 12848 txbasval 12907 |
Copyright terms: Public domain | W3C validator |