ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg3 Unicode version

Theorem eltg3 12263
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
eltg3  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  E. x
( x  C_  B  /\  A  =  U. x ) ) )
Distinct variable groups:    x, A    x, B    x, V

Proof of Theorem eltg3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-topgen 12178 . . . . . . 7  |-  topGen  =  ( x  e.  _V  |->  { y  |  y  C_  U. ( x  i^i  ~P y ) } )
21funmpt2 5169 . . . . . 6  |-  Fun  topGen
3 funrel 5147 . . . . . 6  |-  ( Fun  topGen  ->  Rel  topGen )
42, 3ax-mp 5 . . . . 5  |-  Rel  topGen
5 relelfvdm 5460 . . . . 5  |-  ( ( Rel  topGen  /\  A  e.  ( topGen `  B )
)  ->  B  e.  dom  topGen )
64, 5mpan 421 . . . 4  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
7 inex1g 4071 . . . 4  |-  ( B  e.  dom  topGen  ->  ( B  i^i  ~P A )  e.  _V )
86, 7syl 14 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  ( B  i^i  ~P A )  e. 
_V )
9 eltg4i 12261 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  A  =  U. ( B  i^i  ~P A ) )
10 inss1 3300 . . . . . . 7  |-  ( B  i^i  ~P A ) 
C_  B
11 sseq1 3124 . . . . . . 7  |-  ( x  =  ( B  i^i  ~P A )  ->  (
x  C_  B  <->  ( B  i^i  ~P A )  C_  B ) )
1210, 11mpbiri 167 . . . . . 6  |-  ( x  =  ( B  i^i  ~P A )  ->  x  C_  B )
1312biantrurd 303 . . . . 5  |-  ( x  =  ( B  i^i  ~P A )  ->  ( A  =  U. x  <->  ( x  C_  B  /\  A  =  U. x
) ) )
14 unieq 3752 . . . . . 6  |-  ( x  =  ( B  i^i  ~P A )  ->  U. x  =  U. ( B  i^i  ~P A ) )
1514eqeq2d 2152 . . . . 5  |-  ( x  =  ( B  i^i  ~P A )  ->  ( A  =  U. x  <->  A  =  U. ( B  i^i  ~P A ) ) )
1613, 15bitr3d 189 . . . 4  |-  ( x  =  ( B  i^i  ~P A )  ->  (
( x  C_  B  /\  A  =  U. x )  <->  A  =  U. ( B  i^i  ~P A ) ) )
1716spcegv 2777 . . 3  |-  ( ( B  i^i  ~P A
)  e.  _V  ->  ( A  =  U. ( B  i^i  ~P A )  ->  E. x ( x 
C_  B  /\  A  =  U. x ) ) )
188, 9, 17sylc 62 . 2  |-  ( A  e.  ( topGen `  B
)  ->  E. x
( x  C_  B  /\  A  =  U. x ) )
19 eltg3i 12262 . . . . 5  |-  ( ( B  e.  V  /\  x  C_  B )  ->  U. x  e.  ( topGen `
 B ) )
20 eleq1 2203 . . . . 5  |-  ( A  =  U. x  -> 
( A  e.  (
topGen `  B )  <->  U. x  e.  ( topGen `  B )
) )
2119, 20syl5ibrcom 156 . . . 4  |-  ( ( B  e.  V  /\  x  C_  B )  -> 
( A  =  U. x  ->  A  e.  (
topGen `  B ) ) )
2221expimpd 361 . . 3  |-  ( B  e.  V  ->  (
( x  C_  B  /\  A  =  U. x )  ->  A  e.  ( topGen `  B )
) )
2322exlimdv 1792 . 2  |-  ( B  e.  V  ->  ( E. x ( x  C_  B  /\  A  =  U. x )  ->  A  e.  ( topGen `  B )
) )
2418, 23impbid2 142 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  E. x
( x  C_  B  /\  A  =  U. x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   {cab 2126   _Vcvv 2689    i^i cin 3074    C_ wss 3075   ~Pcpw 3514   U.cuni 3743   dom cdm 4546   Rel wrel 4551   Fun wfun 5124   ` cfv 5130   topGenctg 12172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2913  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-topgen 12178
This theorem is referenced by:  tgval3  12264  tgtop  12274  eltop3  12277  tgidm  12280  bastop1  12289  tgrest  12375  tgcn  12414  txbasval  12473
  Copyright terms: Public domain W3C validator