ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2d Unicode version

Theorem en2d 6734
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en2d.1  |-  ( ph  ->  A  e.  _V )
en2d.2  |-  ( ph  ->  B  e.  _V )
en2d.3  |-  ( ph  ->  ( x  e.  A  ->  C  e.  _V )
)
en2d.4  |-  ( ph  ->  ( y  e.  B  ->  D  e.  _V )
)
en2d.5  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
Assertion
Ref Expression
en2d  |-  ( ph  ->  A  ~~  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem en2d
StepHypRef Expression
1 en2d.1 . 2  |-  ( ph  ->  A  e.  _V )
2 en2d.2 . 2  |-  ( ph  ->  B  e.  _V )
3 eqid 2165 . . 3  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
4 en2d.3 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  C  e.  _V )
)
54imp 123 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  _V )
6 en2d.4 . . . 4  |-  ( ph  ->  ( y  e.  B  ->  D  e.  _V )
)
76imp 123 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  _V )
8 en2d.5 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
93, 5, 7, 8f1od 6041 . 2  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-onto-> B
)
10 f1oen2g 6721 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  (
x  e.  A  |->  C ) : A -1-1-onto-> B )  ->  A  ~~  B
)
111, 2, 9, 10syl3anc 1228 1  |-  ( ph  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982    |-> cmpt 4043   -1-1-onto->wf1o 5187    ~~ cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-en 6707
This theorem is referenced by:  en2i  6736  map1  6778
  Copyright terms: Public domain W3C validator